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Enhancing the Move framework
Endianness port and Immediates handling

Abstract

At the laboratory of Computer Engineering of the Faculty of Informationtechnology and Sys-
tems of the Delft University of Technology, research has been done in automating the design
process of application specific processors (ASPs). Within this so-called MOVE project a MOVE
framework was developed which shortens the design time of ASPs. With this MOVE framework
a MOVE processor can be designed. The MOVE processor architecture is a VLIW-like trans-
port triggered architecture (TTA). The main advantages of this architecture are its flexibility and
scalability.

The software framework includes a generic front-end compiler, GCC and its tools, and
a back-end compiler. Research and implementation has been done on the whole framework
to make the architecture both host-endianness independent and target-endianness independent.
Also, work has been done on the back-end to make it possible to schedule long immediates (im-
mediates which do not fit in the fixed-width instruction) into the VLIW-like instruction stream.

To make the framework endianness independent, the GNU front-end was altered to output
either big-endian or little-endian code. The back-end, our in-house developed scheduler and
simulator, was altered to compile and run correct on little-endian and big-endian hosts, and the
back-end was altered to be able to read the different binaries made by the front-end and to be
able to schedule and simulate the code correctly, independent of the host.

To schedule long immediates in the instruction stream, an algorithm to schedule these con-
currently with the rest of the code has been constructed and data structures to hold the state of
the immediates have been added to the scheduler. Where immediates used to be scheduled in
dedicated immediate fields concatenated to the normal instruction word, now the immediates are
scheduled in normal, otherwise unoccupied move slots. Care was taken that the routines and data
structures do not interfere with already existing other algorithms in the scheduler. The algorithm
increased the cycle count by several percents, but made dedicated immediate fields, that can take
up 20% of the instruction word length, obsolete.
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Introduction 1

This chapter gives a short introduction to the various topics covered in this thesis.
At the laboratory of Computer Engineering of the Department of Electrical Engineering,

Delft University of Technology, research has been done in automating the design process of ap-
plication specific processors (ASPs). ASPs represent a huge part of the microprocessor market,
as they are used in increasingly popular embedded systems.

One of the largest part of the costs of an ASP is its design time. To shorten this design
cycle, this laboratory has been developing an automated design framework based on theTrans-
port Triggered Architectureparadigm. The concepts behind TTAs were developed in the same
research group, and proved themselves to be especially suited for the ASP synthesis. For an in
depth description of the move framework, please read chapter 2.

Several for-profit companies have been interested to take the Move framework principles and
use them in their own products. One of them is NEC Computer and Communications Research
Labs (CCRL) in Princeton, New Jersey, USA1, later spun off into the independent company
Eulix Networks. While developing a programmable communications processor, they needed a
core that was both flexible in its interface and functionality while having a short design cycle.
The MOVE framework was chosen to implement this core. The requirements as posed upon the
MOVE framework by the communications processors specifications included, amongst others, a
little-endian version of the MOVE core, support for long immediates, support for some special
function units (SFUs) attached to the MOVE core, support for 64bit loads and stores, support for
global registers, and support for an interface to the co-design simulator of the processor.

In September 1999, I was asked by my professor, dr. H. Corporaal, to join the development
group in New Jersey to work primarily on two of these issues, namely the support for long im-

1see http://www.ccrl.nj.nec.com/
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4 CHAPTER 1. INTRODUCTION

mediates and the support for endianness independence. I also did some work on other problems
related to the integration of the MOVE core into the communications processor, but they will not
be discussed here as they fall outside the scope of my master’s thesis.

1.1 Endianness independence

The communications processor, as developed by Eulix Networks, deploys several on-core traffic
control units as well as some busses, e.g. a standard PCI bus for external host-communications.
Since these were all developed as little-endian modules, it was natural for the MOVE core to be
little-endian, too. Traditionally, MOVE has been a big-endian target, developed and simulated
on big-endian hosts, like HP’s HPPA and Sun’s Sparc architectures. Lately, development in the
research laboratory has been shifted towards more common, cheaper, x86 platforms, running the
Linux operating system. The x86 is a little-endian platform.

All these factors lead to the conclusion that the traditionally big-endian-host/big-endian-
target architecture of MOVE needed to be extended to handle all four permutations of host and
target endianness.

1.2 Long Immediates

Traditionally, MOVE has been primarily a research concept, with few actual realized hardware
prototypes. As such, the limitation that the width of an immediate in bits needed to be shorter
than the (fixed-width) instruction width of an instruction slot, could be easily overcome, since the
simulator didn’t need to work on the actual bits of the binary, but on a symbolic representation
of the scheduled program in memory.

In the cases where a chip was actually realized, short term solutions were devised. One of
them was to use a two-step stage, where an instruction containing an immediate was always
followed by an instruction slot that did not contain an instruction but the value of the immediate.
The program counter was incremented by two instead of one in this case.2. This was a good
solution since the scheduling freedom was low anyway, due to the fact this particular MOVE
instance had only 1 bus, but a bad one if the MOVE architecture would define multiple busses,
since then it would be more advisable to schedule them into empty slots that are inherently
present in VLIW scheduled instruction words.

Another solution was to add a dedicated immediate field at the end of the VLIW instruction
word, that could never contain an instruction but only an immediate. Downside of this solution
is that an instruction word would always contain one or more immediate fields, and that in case
there was no instruction with an immediate present, bits would be wasted, which is a significant
factor when it comes to low-cost embedded processors.

Above observations led to the conclusion that a new way to schedule immediates needed
to be implemented. An implementation that would not waste bits but would try to schedule an
immediate in unused instruction in the instruction word stream, thus minimizing the code size.

2This solution was implemented in the MicroMove [Jan97] processor by TNO-FEL, The Hague, Netherlands
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1.3 Overview of the rest of the thesis

First, chapter 2 will describe the Move project, in order to have a good understanding of the
principles of the Move framework.

The remaining of this thesis will further address the main two topics of this thesis.
Chapter 3 will address the ideas and difficulties behind endianness of both host-endianness

dependencies and target-endianness dependencies. Chapter 4 will explain how these prob-
lems were addressed in making the Move framework both host-endianness as well as target-
endianness independent.

Chapter 5 will explain the rationale behind long immediates in the Move framework. Chap-
ter 6 will address the implementation of long immediate support in the Move framework. Chap-
ter 7 will review these adaptations, and a quantitative and qualitative analysis will be given, as
well as a comparison with a functionally similar approach to long immediates encoding and
implementation in a different research group.

Finally, chapter 9 will draw conclusions on the results and will give some recommendations
for future work on this subject.
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The MOVE Framework 2

Due to the decreasing feature size of VLSI technology, the amount of hardware which can be
integrated into a single chip increases. As a result, future processor chips may execute tens
of operations concurrently. Many applications can profit from these huge amounts of hardware
parallelism by designing an application specific instruction set processors (ASIP). Two problems
emerge however: (1) the design space of ASIPs is very large; it is difficult to chose a satisfactory
solution, and (2) the design complexity increases and therefore design cycle gets too long.

To alleviate these problems a design trajectory based on atemplated, transport triggered
architecture(TTA) has been developed. Using a restricted, but still very large, design space it is
possible to automate the design trajectory based on a quantitative analysis of many design points.
A key aspect of TTAs is the reduction of the on-chip data transport requirements; this may result
in a better cost-performance ratio of the realized ASIPs. In this chapter we discuss an automated
design process for ASIPs using theMOVE framework.

The chapter is structured as follows: Section 2.1 explains the MOVE framework, and dis-
cusses briefly how TTAs operate. Then, in section 2.2 several conclusions are drawn.

2.1 The MOVE framework

Designing ASICs based on templated application-specific instruction set processors (ASIPs) is
an attractive solution that offers flexibility and a short design time while still retain part of the
advantages of ASICs. The design process consists of finding the right architecture parameter
values for the given application, such as the operation set, the amount of instruction level par-
allelism, and the sizes of the register files. Also, additions of special function units that can
map a complex task into one single optimized instruction are possible. The quality of a solution

7



8 CHAPTER 2. THE MOVE FRAMEWORK

depends on the offered performance and the implementation costs.
The synthesis framework presented in this section uses an architecture design space based on

a transport triggered architecture, or TTA. This architecture is of theinstruction level parallel
type; it resembles the well known VLIW architectures. However, a key difference is that TTAs
are programmed by specifying data transports instead of operations. This gives an finer level
of control to the code generator, and allows for a more efficient use of hardware resources. Al-
though we use a TTA template for designing ASIPs, the design space is still very large. Picking
a proper solution (for a specific application) from this design space requires a quantitative anal-
ysis of many design points. This search process must largely be automated in order to reduce
the design time. Therefore tools are needed, not only for making the quantitative analysis of
hardware and software (generated code), but also for the automated search.

The MOVE framework consists of a set of tools for hardware and software synthesis. Within
the synthesis process we use anarchitecture template, i.e. processors are built according to the
pattern of a TTA. A specific TTA is defined by a set of architecture parameters, like the num-
ber and type of function units, the number of register files and registers, etc. At first sight this
suggests that we restrict ourselves and therefore obtain inferior solutions. In practice however,
several advantages emerge. Firstly, the template building blocks are pre-designed and can there-
fore be made very efficient, both in area and performance. Secondly, the architecture pipelining
is worked out very carefully, alleviating many timing bottlenecks; prototype realizations learned
where these bottlenecks exactly are. Finally, usage of a clearly defined design space allows
the design of synthesis and evaluation tools, which not only generate a combined hardware and
software solution, but also allow a quantitative analysis of the design space. Also, note that the
template still covers a very large design space.

Architecture
parameters

Optimizer

Feedback Feedback

interaction
User

Software subsystem Hardware subsystem

Figure 2.1: MOVE framework overview.

The synthesis of hardware and software for a given application is done using the MOVE
framework; this framework produces both the layout of an ASIP and the corresponding object
code to be executed on this ASIP. An overview of this framework is shown in figure 2.1. It
consists of three main components:

1. Optimizer which is responsible for searching the design space and the interaction with
the designer. It determines the configuration (i.e., the set of architecture parameters) to be
evaluated next.

2. Hardware subsystemgenerating processor layout, and giving information on timing,
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area, and power consumption.

3. Software subsystemgenerating instruction level parallel code, and giving statistical in-
formation on usage of hardware resources.

These components are detailed in following subsections. Before, we briefly describe how
TTAs operate.

2.1.1 Transport triggered architectures

TTAs can be compared to VLIW architectures; their instructions are horizontally encoded; i.e.
each instruction has a number of fields. Whereas fields for VLIWs specify RISC like operations,
for TTAs they specify the required data transports. These transports may trigger operations
as side effect. Programming transports adds an extra level of control to the code generator,
and enables new optimizations; in particular, it allows us to get rid of many superfluous data
transports to and from the register files and to reduce the on-chip connectivity[HC94].

A compiler views a TTA as a collection of function units (FUs), register files (RFs),move
buses, andsockets; see figure 2.2. FUs perform operations, RFs provide temporary fast accessi-
ble storage, the network of move buses performs data transports between the FUs and RFs, and
sockets interface FUs and RFs to move buses. Normally, each socket is connected to a different
FU input/output or RF port.

SocketsMove Bus

Transport
network

FU FURF RF

Figure 2.2: General structure of a TTA.

To illustrate TTA programming, consider the following three operations of an operation trig-
gered machine, or OTA:

add r1, r2, r3 /* r1 = r2 + r3 */
sub r4, r2, r6 /* r4 = r2 - r6 */
st r4, r1 /* store r4 at address r1 */

These operations can be translated into the following two TTA instructions:

r2->add_o, r3->add_t, r2->sub_o; r6->sub_t;
add_r->st_t, sub_r->st_o;

In the first instruction the four operands of the add and subtract operations are moved from
the RF(s) to the FU inputs of the FUs that perform the two operations. In the second instruction
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the results of the add and subtract operations are moved from the FUs that performed them
to the FU that performs the store operation. From this small example we already observe a
few advantages of TTAs. The results of the add and subtract operations are not written back
to the RF and the operands of the store operation are not read from the RF. The former saves
RF write accesses and data transports, the latter saves RF read accesses. Since TTAs do not
couple move buses and RF ports directly to FUs, as is the case for many VLIW and super-scalar
architectures, the freed resources can be used for other operations. This makes that TTAs have
a better hardware utilization, which implies less hardware for the same performance or more
performance with the same hardware [HC94].

The interconnection network may be fully connected, as shown in figure 2.2, in which case
every socket is connected to all move buses, or partially connected. A fully connected inter-
connection network simplifies the code generation task, but it likely results in a high bus load
on the move buses which affects the achievable cycle time. Therefore, in practice the intercon-
nection network will be partially connected and the compiler is responsible to use the available
connections as well as possible.

Besides executing operations on data, TTAs need to provide immediate operands, condi-
tional execution, and control flow changing operations. Details on these issues can be found
in [Cor95b, CM91].

2.1.2 Optimizer
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Figure 2.3: Possible solutions and Pareto points.

Two main design evaluation criteria are cost and performance, where performance is defined
as the inverse of execution time. Costs may include the amount of chip area, number of pins,
power dissipation, and code size1. Execution time is dependent on the number of executed
operations, latencies, cache misses, and the clock cycle time. Thesolution spaceis given by
all possible design points in the 2-dimensional cost-performance space. Figure 2.3 shows many
generated solutions for a test application (described in [CH96]). As shown, the solution space is

1Currently are included area and pins only.
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bounded by a curve connecting so calledPareto points.
The optimizer finds its way through this search space by iteratively trying different archi-

tecture solutions, and letting the software and the hardware subsystems produce relevant infor-
mation about these solutions, like cycle time, costs and number of cycles needed to run the
application. Based on this information a next design point is chosen by updating the parameters.
The initial architecture parameter values can be chosen freely by the user. He can also specify an
evaluation function (e.g. minimize the product of costs and execution time), and the stop criteria.

2.1.3 Hardware subsystem

The hardware subsystem of the MOVE framework is responsible for the realization of an appli-
cation specific TTA in silicon. It accepts architecture parameter values, technology information
and a cell library as input, and produces a VLSI layout (e.g. in CIF format) of the generated
processor as output. Figure 2.4 shows its organization.

Processor
generator

Silicon
compiler

Hardware modeler

Processor
layout

Statistics on area and timing

Architecture
parameters

Technology description
& cell library

Figure 2.4: The hardware subsystem.

The design space explorer makes use of ahardware modelto estimate the cost of design
points. The costs of FUs are based on a 32-bit data path width2, and relative to an integer FU.
The minimum clock cycle time for a TTA realization is largely determined by the time needed
to perform (and control) data transport.

2.1.4 Software subsystem

The software subsystem is detailed in figure 2.5. It provides the user with three main tools to
develop code for TTAs. These tools are:

1. A compiler (referred to also as MOVE front-end) to translate HLL (high level language)
code to sequential move code

2Although the hardware subsystem can generate processors for any data width, the software subsystem currently
requires 32 bit integers.
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& Analyzer
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Profiling data

Sequential code

Parallel code

Statistics
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Figure 2.5: The software subsystem.

2. A scheduler (or MOVE back-end) to schedule the sequential code and produce parallel
code for a target TTA

3. A simulator and analyzer to verify and evaluate both the sequential and parallel code.

The software subsystem accepts any application coded in C or C++ and translates it into
text representation of MOVE parallel code for a specific TTA. The components of the software
subsystem are described in detail below.

Compiler

The MOVE front-end is a combination of three tools: proper compiler, assembler and linker.
Their relationship is depicted in figure 2.6. In order to be assured of good code quality, good
HLL compatibility, support for new HLLs and an extensively debugged compiler, a port of GNU
C compiler (gcc), assembler, and linker was made. These software packages are ported to pro-
duce binary sequential MOVE code for aMOVE generic machine. This code is sequentially
ordered by instructions; each move referring to the same operation is grouped in a single instruc-
tion, resembling OTA instructions. Sequential code is used as intermediate representation of the
program and is read by the scheduler.

Scheduler

The scheduler is the most important part of the software subsystem. Its main function is to sched-
ule moves of sequential code, i.e. to assign FUs to operations and to assign cycles, sockets and
buses to moves. The scheduler has to generate instruction level parallel code, while exploiting
all the available hardware resources. To this purpose, the scheduler uses profiling data (like exe-
cution frequencies) from the simulator. Several preliminary optimizations on sequential code are
also applied. The scheduler uses advanced techniques like extended basic block scheduling, soft-
ware pipelining, and speculative execution, in order to enhance code motions and consequently
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Sequential code
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Figure 2.6: Relations between the ported GNU compiler, the assembler and the linker.

inter basic block parallelism [Hoo96]. All specific optimizations of TTAs (result bypassing, dead
moves elimination, operand sharing) are performed during the scheduling process. The paral-
lel code is fully parameterized on the template configuration, which is specified in a machine
description file. In this file processor resources, like supported FUs, amount of registers and
interconnection network are described. Profiling information is not strictly necessary, but helps
the scheduler to work more efficiently.

Simulator

The simulator accepts either sequential MOVE code or parallel MOVE code. Its output consists
of profiling information, application output and execution statistics. The simulator has three
purposes in the MOVE framework:

1. To verify the compiler and the scheduler. It is virtually impossible to port a compiler and
write a scheduler without simulating the produced code.

2. To evaluate architecture parameters. The results of the evaluation are cycle counts and
various statistics about resource utilization and compilation events (e.g. the number of
operand swaps and the number of loop scheduled using software pipelining).

3. To provide profiling data to the scheduler. Profiling data consist of execution counts for
each basic block and each control flow edge between basic blocks in the program. With
this information the scheduler can decide which code motion between basic blocks is most
profitable.
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2.2 Conclusions

In this chapter we showed an automated design trajectory for ASIPs based on transport triggered
architectures. This trajectory has two fundamental capabilities:

1. It maps arbitrary applications, written in C/C++, into a combination of hardware and soft-
ware.

2. It offers the possibility to do a quantitative analysis of large parts of the design space.

The search process to find a proper solution consists of resource and connectivity optimiza-
tion. Resource optimization attempts to find the cost effective set of resources. Connectivity
optimization reduces the connectivity in order to reduce bus load and cycle time. As side ef-
fect it has been demonstrated that the synthesized TTAs require far less connectivity and fewer
register ports than more traditional instruction level parallel architectures.
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Overview on endianness 3

The MOVE framework historically ran on big-endian platforms like HPPA, Sparc and MIPS.
With the increased popularity of Linux running on relatively cheap little-endian platforms, like
the x86 platform, the need for a port of the MOVE framework to a little-endian host platform
arose. At the same time, the “PcomP” implementation of the MOVE architecture was decided
to be little-endian. This and the next chapter will deal with changing the MOVE framework
to be running independent of the host platform’s endianness, as well as changing the MOVE
framework to be able to generate and simulate code for both little and big-endian targets.

This chapter will give an overview on endianness dependence itself, and how that affects
implementation of tools, with the emphasis on emulation tools. Chapter 4 will discuss how the
principles of this chapter are used in the port of the MOVE framework.

3.1 Endianness in general

Endianness, deals with the ordering of fields within an item. Usually it means byte ordering
within a halfword, word and double word. However it can also mean bit ordering within bytes.
Byte ordering is the most visual, since most memory systems are byte addressable, IO works on
bytes, strings are packed as bytes within words, etc. Bit ordering comes into play when structures
are accessed with bitfields in a byte. The latter becomes architecturally visible when a program
accesses bitfields within a byte.

The historical name “endianness” refers to the book “Gulliver’s travel” by Jonathan Swift.
The Lilliputians liked to break their eggs on the small end and the Blefuscudians on the big end.
According to the book,...It is computed that eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their Eggs at the smaller End. Many hundred large

17
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Volumes have been published upon this Controversy. The analogy is taken very well, since there
is no real “correct” implementation. Both have their advantages and disadvantages.

The official definition of big-endian and little-endian is the following:

big endian ordering means storing the least significant byte at the most significant ad-
dress.

little endian ordering means storing the least significant byte at the least significant ad-
dress.

Consider the following 16 bytes of data in table 3.1

address 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
contents 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Table 3.1: Memory as an array of bytes

If instead of considering the memory as an array of bytes, we consider the same memory
contents as four 32-bit words. Then it will be shown that a little or a big endian machine have
a different view on the memory. Table 3.2 will show a little-endian memory and table 3.3 will
show a big-endian memory.

contents word addr
03 02 01 00 00
07 06 05 04 04
11 10 09 08 08
15 14 13 12 12

Table 3.2: Little endian memory as an array of words

word addr contents
00 00 01 02 03
04 04 05 06 07
08 08 09 10 11
12 12 13 14 15

Table 3.3: Big endian memory as an array of words

In the two tables, the bytes are grouped into four byte words, which are shown in the normal
Arabic form, with the most significant byte on the left. In table 3.2 the word address column
was put on the right (“little end”) because the computer uses the address of the least significant
byte, the byte on the right, to address the word. In table 3.3, the address column is on the left
(“big-end”), showing that the computer addresses the most significant byte in words operations.
As a result, a little endian processor loading the 32-bit work at word address0x00 would obtain
the value0x03020100 , while a big endian processor would obtain the value0x00010203 .
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An important observation that has to be made is that if a certain machine is unable to access
bits in a byte, the endianness with respect to bit-ordering means nothing. This is because the
program has no way to access data smaller than a byte anyway, and as long as the machine stores
and retrieves the data in a consistent way, it doesn’t matter how exactly this is done. The same
goes for a machine which is word-addressable, because words will always be fetched as a whole
from memory, and it doesn’t matter how those words are stored in memory.

Examples of little-endian machines are the Intel x86 family and various architectures from
DEC, like the VAX, the PDP-11 and the Alpha. Examples of big-endian machines are the Sun
Sparc, HPPA and the m68k architecture. Still other architectures, like the PowerPC, the MIPS
and the Intel IA-64 architecture, are capable of operating in either big or little endian mode.
Usually the operating system dictates the endianness that the processor is going to use during
that boot.

Regarding endianness, we can divide the problem in two parts. First is the most known one,
the so-called “host endianness”. This kind of endianness concerns the problem of begin able
to use data between platforms of different endianness. What one wants to do is, for instance,
write a binary file on a big-endian platform, and read it on a little-endian platform. This is what
section 3.3 discusses. Section 3.4 discusses another problem regarding endianness, the so-called
target-endianness. This kind of endianness concerns the fact that a certain host should be able
to process data in a certain endianness, without having that data being related to the host itself.
This is a common scenario when dealing with foreign binaries. MOVE specific, this means that
a certain host has to be able to process binaries, and simulate binaries, from any endianness.
First we will present some solutions to handle endianness, both on the software level as on the
hardware level.

3.2 Solutions

3.2.1 Software solutions

There are different ways to agree on an interface:

1. Form an endianness-independent transport layer.Certain graphics applications, like
Framemaker, have an option to write the data to an endianness independent file. With
Framemaker, this is the.mif -format, or Maker Independent Format. This file can be
read on any platform, but is two to three times larger than the normal.doc format
that Framemaker uses. Sun has its XDR (eXternal Data Representation) format [Zuk98],
which, apart from endianness independence, also claims independence from various float-
ing point implementations.

2. Let the data be stored/transmitted in the native endianness of the sender.This is
done along with tag or header that indicates endianness. This method is deployed by the
TIFF graphics format, which can either be “IBM ordered” or “Macintosh ordered”. A
header specifies whether the data is big (“Macintosh ordered”) or little (“IBM ordered)
endian. Another scenario where this principle is applicable is when dealing with binaries
from a different architecture. If a binary is in a certain endianness, and it is emulated or
simulated on a host machine, this host machine has to check for endianness in that ’target’
architecture and handle accordingly.
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3. Let the data always be a certain kind of endianness.This is the most common way
to handle endianness, since it is unambiguous what the data’s endianness is. This way
a program only has to take into account its own endianness. This is also the way the
Internet works. Data transmitted over the internet is always big-endian, and Unix systems
provide the system callsntohl(3) andhtonl(3) , for respectively “network-to-host”
swapping and “host-to-network” swapping.

3.2.2 Changing and detecting endianness

To “encode” an endianness independent layer, like in option 1, every designer is free to choose
his own implementation. Option 2 and 3 only need a so-called “byte-swap” or “byte-reordering”.
For this “byte-swap”, a very simple piece of code can be used:

#define BSWAP32(x) \
x = ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \

(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))

What we do here is just swapping bytes 1 and 4, and bytes 2 and 3 in a word. This will
indeed swap the data, and will convert tables 3.2 and 3.3 into each other. This macro is exactly
the code used in thentohl(3) andhtonl(3) calls on little-endian platforms. On big-endian
platforms, where there is no swap needed, since host ordering and network ordering are the
same, these two calls are null-macros, a very efficient way to implement a no-operation in C or
C++.

A good way to detect the endianness of a platform is the following standard piece of code:

long i = 0x44332211;
unsigned char* a = (unsigned char*) &i;
end = (*a != 0x11);
printf("The endianess is %s!\n", ((end==1)?"big":"little"));

This piece of code will fetch one byte out of the wordi , by getting the byte addressed by
the pointer toi . If the platform’s endianness is little, the byte0x11 is fetched, since theleast
significant byte is stored at the most significant address, which is the pointer’s address. If the
platform’s endianness is big, the byte0x44 is fetched, since themostsignificant byte is stored
at the most significant address. And the most significant address is the address to which the
pointersi anda point.

3.2.3 Hardware solutions

Although not in the scope of this thesis, a brief overview on hardware solutions to the endianness
problem are discussed. If there is no way to have software do byte-swapping, the hardware has
to do this. A common principle to do this is to give the system multiple views on the address
space where the endianness-dependent devices, like memory or graphics processor, reside. These
various views are calledapertures. For example, a PCI based graphics adapter that internally
uses a little endian processor can provide two apertures (ranges of addresses) for its frame buffer.
Accesses to the little endian aperture store the data as presented on the bus directly into the frame
buffer; accesses to the big endian aperture swaps the data bytes before storing them. Thus, an
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application running on a big endian processor can simply access the big endian aperture and
store its big endian data just as if it were running on a little endian processor. The device takes
care of swapping the data in hardware as necessary.

3.3 Host endianness

Host endianness concerns the way data can be kept portable across platforms. This section
will concentrate mainly on files, although its principles can easily be extended to other forms
of interoperatibility, like shared memory between a graphics processor and a CPU, or inter-
architecture buses (PCI, SCSI). Regarding Move, this means that solution 3 from section 3.2.1 is
used: Let the data on disk always have the same endianness. This way the only check a program
has to do is its own endianness.

3.3.1 Example

As an example of host-endianness, we will explain the profiling code in the scheduler. The
profiles, including frequency counts and memory dependencies, are target-independent data.
Therefore, they are stored on disk in a pre-defined endianness. In this case this is big-endian.

The functionsProg::SaveProfile and Prog::LoadProfile are responsible for
writing and reading the profiles. Therefore the following code can be found:

for(p = proc; p; p++)
{

for(b = p->blck; b; b++)
{

#if HOST_LITTLE_ENDIAN
f = SwapEndianess(b->freq);

#else
f = b->freq;

#endif
file.write((char *) &f, sizeof(double));

}
}

For each procedure, and each block in that procedure, an integerb->freq exists, indicating
the frequency of that basic block during execution. Because agreed was that all data on disk was
big endian, a byte swap is performed, governed by the predefineHOSTLITTLE ENDIAN. The
functionSwapEndianess performs the actual byte swap in the wordb->freq .

3.4 Target endianness

Target endianness concerns the portability of foreign code on a platform of random endian-
ness. This is especially relevant here, since any platform, either big or little, should be able to
omit, schedule and simulate binaries from any MOVE architecture. Now it is, contrary to host-
endianness, important to keep the endianness of a file intact while reading and writing. This
means we take on option 2 as presented in the list of subsection 3.2.1. This option says that the
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endianness of a certain file can depend. This means that the program has to know up front what
kind of file it is dealing with. Regarding Move, this means that the tools have to know what kind
of endianness the target-binary has. Since the host-endianness still has to be taken into account,
the rules for swapping get more complicated. Table 3.4 shows all cross-combinations possible.
For swapping, the macro as presented in subsection 3.2.2 can be used.

target target
big little

host big no swap swap
host little swap no swap

Table 3.4: Endianness swap depending on host and target

3.4.1 Example

As an example of target endianness, we take the reading of the text segment of the serial binary.
The text segment is “target-dependent”, that means that the serial binary can contain either Move
code for a little-endian Move architecture or a big-endian Move architecture. The scheduler is
compiled with an option that indicates what kind of target-endianness is should be capable of
handling. This is defined in theconfig.h file of the scheduler:

#define __pcomp__

#ifdef __pcomp__
#define TARGET_LITTLE_ENDIAN 1
#define TARGET_BIT_FIELDS_LEFT_TO_RIGHT 0

#else
#define TARGET_LITTLE_ENDIAN 0
#define TARGET_BIT_FIELDS_LEFT_TO_RIGHT 1

#endif

By setting the pcomp define, the target-endianness is known throughout the whole
scheduler. Then we add some extra defines that indicate whether the target-endianness is dif-
ferent from the host-endianness (remember that the host-endianness is already stated in the
HOSTLITTLE ENDIAN defines, derived from the presence of the compiler-required defines

386 and sun .

#if HOST_LITTLE_ENDIAN && TARGET_LITTLE_ENDIAN
#define SWAP_ENDIANESS 0

#elif HOST_LITTLE_ENDIAN && !TARGET_LITTLE_ENDIAN
#define SWAP_ENDIANESS 1

#elif !HOST_LITTLE_ENDIAN && TARGET_LITTLE_ENDIAN
#define SWAP_ENDIANESS 1

#elif !HOST_LITTLE_ENDIAN && !TARGET_LITTLE_ENDIAN
#define SWAP_ENDIANESS 0

#endif
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Now we can proceed to the fileexec.h , which implements theAOut class that reads in the
serial binary. Now we can read in the whole text segment. classAoutMove represents a move
instruction in the binary.

AoutMove* text = (AoutMove *) &image[N_TXTOFF(*exec)];
#if SWAP_ENDIANESS

SwapEndianess(text, exec->a_text);
#endif

We simply map the whole binary (represented byimage ) to thetext array. Now the only
thing left to change is the ordering of the bytes in a word. Since this ordering is dependent on
both the host ordering as the target ordering, theSWAPENDIANESSdefine governs whether a
swap is needed, pursuant to table 3.4.
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Endianness implementation 4

This chapter will explain how the MOVE framework was made endianness-independent. The
previous chapter explained the issues concerning endianness, and this chapter will deploy the
guidelines from that chapter on the MOVE framework, to make it host-platform independent as
well as move-target independent.

4.1 The MOVE framework

The MOVE framework consists of roughly two parts: the front-end and the back-end. This can
be visualized in figure 2.5. The front-end consists of a standard freely available compiler, the
GNU C Compiler, including its tools like assembler, linker and auxiliary tools. This compiler
can be easily ported to other architectures by means of writing a new architecture plug-in. The
tools related to the compiler, the so-called binary tools, include an assembler, linker and various
other tools that operate on the binary. These tools were ported to the MOVE architecture by
rewriting the “m68k” assembly format to fit the MOVE specification. Lastly, a system library,
also called the C-library, is needed. This library does not need any MOVE specific changes, but
it does have some endianness dependencies that need to be resolved. The adaptations needed to
make the front-end endianness independent can be found in section 4.2

The back-end consists of the scheduler tools, including a simulator, scheduler and various
auxiliary tools that help the simulator and the scheduler, like a design-space explorer, a call-
graph visualizer and a tool to view the assembly code in a human readable form. The adaptation
needed to make the back-end endianness independent can be found in section 4.3

The approach taken was to make the whole framework first host-endianness independent.
This alone would allow us to deploy the MOVE framework on Linux platforms instead of Sparc

25
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platforms, even if there was no problem of target endianness (i.e. the Move architecture has only
one endianness, e.g. big, and only the endianness of the host has to be taken into account). This
port was done in such a way, that further work on making the framework target-endianness inde-
pendent, would be straightforward and trivial. Another requirement was that the host-endianness
dependencies would be compile-time invisible, so that there would be no need to set compile-
time switches to help the framework determine what kind of host platform is was compiled on.
This was achieved through the use of the predefines that the compiler sets: e.g.i386 is set
during building and installation on an Intel platform.

Target endianness was implemented in such a way that a single switch in the two Makefiles
is sufficient, one for the front-end and one for the back-end. This would require a recompile
for each target. This was considered not a problem, since the MOVE framework’s directory
layout also included a directory for pre-compiled libraries, which would be target-endianness
dependent anyway. A new tree for either little or big-endian targets, including compiler-binaries
and libraries for each target, is then created.

First, some defines are set to indicate the host and target endianness:

� If the host platform is big-endian (checksun flag, a preprocessor predefine that is always
set on Sparc machines), then the defineHOSTBIG ENDIAN is set to1 and the define
HOSTLITTLE ENDIAN is set to0. Else, the host platform is little endian, and both
defines get their inverse value.

� If the target architecture is little-endian (check setting inconfig.h for the back-end, a
Makefile directive in the front-end) then the defineTARGETLITTLE ENDIAN is set to
1 and the defineTARGETBIG ENDIAN is set to0. Else, the target architecture is big
endian, and both defines get their inverse value.

Note that we explicitly set all preprocessor defines to a value, instead of just defining or
undefining them. Now that these 4 defines are set throughout the whole framework, in a uniform
way, we can easily check for these values whenever we encounter a dependency.

A couple of extra defines are derived from the four mentioned above. In many cases, e.g.
cases were we have both target- and host-endianness dependencies, we want to have a way to
check whether the two endiannesses are the same or different. Therefore we add one more
preprocessor define,SWAPENDIANESS. This define is set to1 when the endiannesses are dif-
ferent, and set to0 when they are the same. Since converting from little to big endianness is the
same as converting from big endianness to little, this define comes in handy whenever we have
encounter a structure that is both dependent on the host and the target platform’s endianness.

Endianness in files on disk can be divided in two variants. One variant is a file that contains
target-dependent information. This includes the serial binary and the parallel binary. The other
variant is a file that does not contain target-dependent information, like the profiling files of the
back-end. These files are always stored in a big-endian way. To process structures in files that
have a target-endianness dependency, and of course implicitly also a host-endianness depen-
dency, we now can use theSWAPENDIANESSdefine to read and write these files correctly. To
process files that only have a host-endianness dependency, we can use theHOSTBIG ENDIAN
or its inverse, theHOSTLITTLE ENDIANdefine.

More problematic are files that contain both target-dependent data (apply target-endianness)
and target-independent (apply host-endianness) data. The serial binary, for instance, also con-
tains various structures that have nothing to do with the program, but are necessary for a correct
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binary. Care must be taken that the routines that operate on these files can recognize the var-
ious structures and process them correctly. The approach taken is to have all host-endianness
dependencies written out in big-endian on disk. This corresponds with the format on disk that
the legacy tools used. The target-endianness is stored either little or big endian, and a tag (in this
case the binary-header) is used to differentiate between the two forms of target-endianness.

To visualize the cross platform requirements on the front-end, please look at figure 4.1. This
will show that every step in the process should be able to read either output from a platform
with the same endianness, as well as output from a platform with a different endianness. This
figure shows the trajectory for one target-endianness. To list all possible cross-relationships, one
should duplicate this figure for another target-endianness. These two figures, each representing
a target-endianness, then would be completely unrelated. For example, a linker compiled to link
big-endian move code cannot read little-endian move code.

little endian platformbig endian platform

object
code

linker linker

object
code

gcc compiler

assembler

MOVE
assembly

gcc compiler

assembler

C/C++ code

assembly
MOVE

object code

Sequential code

from libraries
object code

from libraries

Figure 4.1: The front-end on both endianness platforms

4.2 The MOVE front-end

The front-end consists of the GCC compiler, version 2.7.0, and thebintools distribution,
version 1.38, together with a standard BSD C-library. All three components can be made en-
dianness independent on their own, as long as the interface format is clearly defined. We have
three interface formats that we have to deal with:

1. plain text assembly code (.s files)

2. non-linked object files (.o files)

3. linked binaries (no suffix)
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Regarding host-endianness dependencies, we impose the requirement on these two latter
formats that they are independent of the host-endianness. This results in the property that a file
can be created on one platform, and read back by another platform, without any problems.

The first format, the plain text assembly, has no host-endianness dependencies, since it is
plain text. Plain text is stored sequentially on disk, and has no endianness at all. The other two
do have dependencies, because the object format deploys both bit-fields as well as byte-ordering
within a word.

Regarding target-endianness dependencies, we impose the requirement on these three for-
mats that the binary formats all use the same encodings, so that there is no format difference
between the data in an object and the data in a binary. This also makes sure that object files
archived in a library can be linked against other object files without worrying whether a certain
routine came from a stand-alone object file or a library.

Target-endianness can be divided up in two parts: The actual instructions and the helper
information, such as the symbol table and the relocation table. The choices made for the various
types of endianness for these various kinds of data inside an object file, will be further explained
in subsection 4.2.2, which deals with the port of the assembler, linker and binary tools.

4.2.1 GCC

Since GCC version 2.7.0 is already host-endianness independent, no code changes were needed.
Target-endianness is controlled by some directives in the so called “target-description macros”,
as defined the themachine.h file of GCC. The relevant macros areBITS BIG ENDIAN,
BYTESBIG ENDIAN and WORDSBIG ENDIAN [Sta94]. For little-endian targets, all three
defines are set to zero, and for big-endian targets all three defines are set to one.

Since GCC outputs plain text.s -files, the assembly doesn’t need to care about most endi-
anness problems. A word will be represented as its decimal equivalent in ASCII, and it’s the
assembler’s job to encode this in 4 bytes. What does matter is bitfields within a byte, which
will be implemented by the compiler by shifting the byte several bits, as well as accessing bytes
within a word explicitly in C. This is also handled by the compiler by outputting code that shifts
a word several bytes in order to be able to access the right byte in a word. All the compiler needs
is the three above-mentioned switches to take care of these cases. This concludes the port of
both the target-endianness as well as the host-endianness dependencies of the GCC compiler.

4.2.2 Assembler, linker and auxiliary binary tools

The version of thebintools 1 used in the MOVE framework is version 1.38. This is un-
fortunately a very old version, and completely obsolete. There are two major drawbacks with
this version: The architecture format is not easily changed, instead, for each port, a complete
implementation of the tools exist, instead of a configurable plugin, like GCC-2.7.0 or the newer
versions ofbintools . The second drawback is that host-endianness independence is not im-
plied, like it is in GCC-2.7.0 or the newer versions ofbintools .

These considerations led to a feasibility study of deploying a newer version of the tools. A
new version of thebintools distribution was inspected, but porting to the existing MOVE
binary format, while preserving all intermediate formats and the actual serial binary that the

1the common name for the group of assembler, linker and other tools
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back-end can read, would be a lot of work. On the other hand, some work on making these tools
host-endianness aware was already in progress. Conclusion was that a complete new port to the
MOVE binary format would require more work than changing the current code base. Therefore
it was decided the current version 1.38 was to be changed.

The binary tools consist of the following programs:

� as , the assembler

� ld , the linker/loader

� ar , the library archiver

� size , a utility to print segment sizes

� nm, a utility to print out symbols

� objdump , a utility to dump various segments

� ranlib , a utility to index a library archive

� dem, a utility to demangle C++ symbols

� c++-filt , another utility to demangle C++ symbols

� strip , a utility to strip a binary from its symbols

These tools can be divided in three parts, the assembler, the linker and the rest of the tools.

4.2.2.1 The assembler

The assembler was very straightforward to port. The functionmd number to chars is re-
sponsible for placing a value representing a byte, halfword or word in a file stream. It does this
by putting each byte in the correct position in the 4-byte word. For this it uses the C++>>
operator, which is already host-endianness safe (the compiler will recognize that operator and
rearrange bytes and words in order to let the>> operator be endianness-independent). So the
only consideration is the target endianness. By adding a check forTARGETLITTLE ENDIAN
it was trivial to put the bytes on the right spot in the word, according to the rules of endianness.

The functionmd number to chars is, amongst others, called from the routine that emits
the text segment. Since the move binary instruction field encoded in the binary file contains
bitfields, the calls tomd number to chars are re-ordered in case of a little endian target.

4.2.2.2 The linker

The linker needs to actually read all various segments of an object, in order to be able to read
the symbol and relocation tables, alter them and write them back into the final binary. Since this
old version ofld processes all sections with direct calls to the Unix system call toread(2)
andwrite(2) , it was not directly possible to swap various bitfields and bytes. These functions
read a whole block at once into a buffer, without the option to swap while reading. Therefore
for every kind of segment, new routines calledread <segment> andwrite <segment>
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are created to be put in place of the actualread(2) and write(2) calls. These hooks
then read the corresponding segment in a buffer, process that buffer for endianness according
to the HOSTLITTLE ENDIAN and TARGETLITTLE ENDIAN predefines, as explained in
chapter 3.1, and return the buffer to the calling routine.

In this fashion, the following routines are defined to serve as hook for the realread(2) and
write(2) calls:

� read header , for the binary header

� read integer , for a simple number

� read symroot , for symbol table indexes

� read symbols , for symbols

� read symdef , for symbol definitions

� read reloc , for relocation information

� read arhdr , for the archive header

� read text , for the text segment

� read strings , for simple strings of text

Also, theirwrite counterparts are defined.
These functions read or write the corresponding segment, with knowledge on where bitfields

and other boundaries (such as 16 bit data that only needs to be swapped on half-word boundaries)
on segments occur, so they can apply the endianess switches correctly.

4.2.2.3 Bintools

The bintools, coming from the same distribution as the linker in the previous section, suffer from
the same drawback that they deploy direct calls toread(2) andwrite(2) . In addition to this,
they also use direct calls tofread(3) andfwrite(3) . This means that the list presented in
the previous section needs to be duplicated to also be able to hook all calls tofread(3) and
fwrite(3) . For the rest, the port of these bintools is straightforward and implies, just as with
the linker, replacing all occurrences toread(2) , write(2) , fread(3) and fwrite(3)
with calls to their corresponding hooks.

4.2.3 System libraries

The GNU C Library is endianness independent, except at one point. There are different ways of
encoding floating point numbers. They are:

1. vax for the VAX D floating format

2. tahoe for the TAHOE double format

3. national for IEEE machines whose floating point implementation has similar byte order-
ing as the NATIONAL 32016 with 32081
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4. ieeefor other IEEE machines

A comparison with floating point implementations on other architectures learned that big-
endian IEEE machines use the “ieee” format, while little-endian IEEE machines use the “na-
tional” format. Themakelibs script that generates thelibm library, the math part of the
C-library, was changed so that when the libraries were compiled for a little-endian MOVE tar-
get, the “national” encoding would be used.

4.3 The MOVE back-end

The back-end communicates with the front-end through only one thing, namely the binary. As
explained in the previous section, the host-endianness of the platform where the framework
runs on does not matter, only the target-endianness of the MOVE architecture will influence the
contents of the binary.

Also, it was noted that tools could be run from any host platform. That means files written to
disk between runs of various parts of the back-end should be host-endianness independent, too.
The files we are dealing here with are:

1. the serial binarythat is produced by the front-end

2. profiling data that is written to disk

3. the parallel binarythat is produced by the scheduler

4. the parallel assemblythat is produced by the scheduler

Subsection 4.3.1 will deal with the reading of the serial binary, subsection 4.3.2 with the
scheduling of the MOVE code, subsection 4.3.3 will deal with the profiling files and subsec-
tion 4.3.4 will deal with the write of the parallel binary. The parallel assembly file is just plain
text and has no endianness dependencies.

4.3.1 Binary reader

The binary reader is, endianness-wise, the trickiest part of the back-end. It has the task of
reading the binary generated by the GNU front-end and convert it into internal data structures.
With respect to endianness, this means two things:

1. The binary must be read independent from thehost endianness. That means that in parts
where there is no target-endianness dependency, the defineHOSTLITTLE ENDIANmust
be checked, and a byte swap must occur if the host endianness is different from the en-
dianness of the structure on disk (which is always big endian, like it was in the legacy
framework).

2. The binary must be read independent from thetarget endianness. That means that in parts
where there is a target-endianness dependency, the defineSWAPENDIANNESSmust be
checked, and a byte swap must occur if the host endianness is different from the endianness
of the structure on disk (which can be either way, depending on the target architecture).
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As mentioned in subsection 4.2.2, the serial binary contains various different sections. The
classAOut takes care of reading in the binary, section by section. The following structures
needed adaptation on endianness

� the header, which contains bitfields. The header does not contain any target-dependent
code, so onlyHOSTLITTLE ENDIAN is checked for the bitfields. However, the assem-
bler output routines swap everything. As discussed during the front-end discussion, the
md numbers to chars is called for every segment, even the segments that contain no
target-dependent information. This is because of the old version of the assembler. There-
fore we still need aSWAPENDIANESScheck on the whole header, also on the parts that
do not contain any target-endianness dependencies.

� the text and data parts are both host and target endianness dependent. Therefore these
are read in using theSWAPENDIANESSdirective. The moves themselves are stored as
bitfields in a word, so we need to guard them with aHOSTLITTLE ENDIANcheck and
swap accordingly.

� the relocation data is stored on disk, independent of the target, always in big-endian for-
mat., therefore onlyHOSTLITTLE ENDIAN is checked. Inside the relocation data, we
also have to deal with bitfields, so also on those bitfields aHOSTLITTLE ENDIANcheck
is required.

� the symbols data are stored as strings on disk. These strings are endianess independent.
The only caveat here is that the symbol also contains a word with bitfields. This word
needs aSWAPENDIANESScheck. (not aHOSTLITTLE ENDIANcheck like other bit-
fields, since the whole data is not swapped on byte ordering during read, as the other are)

Concluding we can say that in general, only target-dependent data like the text and data
segments, are both checked against host and target dependencies. Therefore we have to guard
these reads with aSWAPENDIANESS. Other non-target related data need only to be guarded
with HOSTLITTLE ENDIAN. Bitfields, however, must be also checked against host endianness
at all times. This check is implemented by changing the declaration of the structure at compile-
time to match the bitfield-ordering of that specific endianness.

4.3.2 Scheduler

The scheduler is responsible for taking the internal data-structure representing the serial binary,
and converting it into another data-structure that represents the parallel binary. This involves
various steps but none of these steps work on the actual data in the binary. Values like addresses
are already put in the data structures in a correct way by the binary reader, and the binary writer is
responsible for converting the structures back into a binary. Therefore, the scheduling algorithms
do no need any adaptations with respect to endianness dependencies.

4.3.3 Simulator

Simulation generates profiling information, like frequency count and memory dependen-
cies. This profiling data can be written to disk to be used in subsequent runs of the
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scheduler or simulator. Therefore care must be taken when writing and reading these
files. The routinesProg::SaveProfile , Prog::ReadProfile , Prog::LoadMDeps ,
Prog::SaveMDeps and Prog::MDepsExists are therefore guarded with checks on
HOSTLITTLE ENDIAN to make sure the profiling data is written to disk in a host indepen-
dent fashion (namely big-endian), so profiling data can be used across platforms.

The simulator itself does not operate on files. It, however, has other dependencies on endian-
ness. The simulator has to make sure it can offer the program under simulation an environment
that is a correct image of the actual target platform. This means that parts of the simulator that
represent a feature of the target platform, like the memory, the register files, the buses, have
a target-endianness dependency. Most parts, however, have only one way to access them, e.g.
register files and buses can only be written to by whole words at once, without the possibility to
access smaller parts of these words. If one wants a smaller part of a register, this would already
have been addressed in the actual move assembly, that the GCC front-end has generated cor-
rectly already. In other words, these components of the target architecture are word-addressable
and nothing else.

The memory is the big exception here. Memory, although usually written to in whole words,
is byte-addressable. Also, the MOVE architecture provides operations to access half-words and
bytes in memory. This means every write or read to or from memory needs to be split up in
bytes, which will then be written to the memory in a fashion depending on the target-endianness
of the architecture.

Specifically, the memory classSimMemhas member functions likeSimMem::WriteW ,
SimMem::WriteH , SimMem::WriteB , SimMem::WriteS andSimMem::WriteD for
respectively writing words, halfwords, bytes, single-precision floats and double-precision floats.
Also, their read-counterparts are present. These functions all work by first getting a whole 32-
bit quantity from memory, then byte swap depending on theSWAPENDIANESSpredefine, and
either read or write the correct (part of a) word. The implementation of theSimMemclass can
be found in appendix A.

4.3.4 Binary writer

The binary writer’s job is to convert the internal data structure of the program into two files: a
readable assembly output, usually calledb.txt , and a parallel binary, suitable for feeding to an
actual chip, calledb.out . The data structures itself have no endianness dependencies, and the
assembly output is plain text. The focus here lies on the parallel binary.

We assume that by setting the target endianness, we also specify the bit-order of the instruc-
tion stream. This means that if we write out a little-endian binary, both the byte-ordering in the
instruction word (which can be fairly large, e.g. 128 bits for PcomP), and the bit-ordering per
byte is little endian.

For the implementation this means, that we have to make the routine that outputs the so called
BitArray endianness aware. TheBitArray represents the actual move instruction word bits.
This routine is theOutputBinary(ostream &os, Insn *insn) routine. This routine
is responsible for allocating theBitArray . ClassBitArray is already overloaded with the
<< operator. The change is that this overload function is altered to make it target-endianness
aware, so that it can bit-swap the entire instruction word, if necessary.
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4.4 Conclusions

The port of the MOVE framework to be both host and target-endianness independent is com-
pleted with success. The tools compile without any compile time options given on both big and
little-endian hosts. The distribution is altered so that one compile-time switch will make both
the front-end as the back-end target-endianness aware. This distribution then can be installed in
a parallel directory tree on the same machine and a simple change to the shell’s default search
path can let the tools switch between the little and big-endian targets.
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Immediates overview 5

A large part of this thesis is devoted to the issue of encoding immediates in the MOVE processor.
In this chapter, an introduction on immediates in MOVE is given. In section 5.1 and 5.2 and
general overview on immediates and their implementation in other architectures is given, and in
section 5.3 the current state of immediates in MOVE is given. The next two chapters will deal
with the implementation of the new immediate framework and a review on the implemented
code.

5.1 What are immediates

A processor usually has different ways to supply operands to its operations. Usual ways include
register reference mode (add r3, r1, r2 ) and immediate mode (add r3, r1, #234 ).

An immediate is a way to pass a constant value directly from the instruction stream to an
operation in the processor. To encode an immediate in the instruction stream, caution has to be
taken. An immediate can take up relatively many bits of the instruction word, e.g. you only need
5 bits to encode 32 registers, but you need already 10 bits to be able to specify, e.g. constant 911.
If you want to do an add of two constant 32bit values into a register, you need to encode, apart
from the result register, 64 additional bits. To handle the encoding of large immediates into the
instruction stream, different architectures have come up with different solutions.

Encoding immediates in the instruction stream poses several problems:

� As already mentioned, the code size will increase, since constants take a lot of bits, espe-
cially compared to (efficient) encodings for the address space for registers.

� If the immediate bits are separated from the operation that uses them, scheduling becomes
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more difficult.

� We can distinguish between signed and unsigned immediates. Care has to be taken when
sign-extending immediates to fit a certain immediate field.

5.2 Immediates in other architectures

Before we discuss the implementation of immediates, we will describe how other common ar-
chitectures have solved the problem of immediates.

5.2.1 CISC

As an example on how a typical CISC machine has solved the immediate problem, we’ll take the
x86 instruction set as an example. The actual name CISC (“Complex Instruction Set Computer”)
indicates that its instruction set can be very specific and large. A common feature of CISC is
that is has many different addressing modes. We’ll take the example of the x86 “ADD” [Int97]
instruction here, and list all possibilities of using this “ADD” instruction with an immediate
operand.

Opcode Instruction Description
04 ib ADD AL, imm8 Add imm8 to AL
05 iw ADD AX, imm16 Add imm16 to AX
05 id ADD EAX, imm32 Add imm32 to EAX

Table 5.1: Partial X86 ADD instruction reference

As you can see, this typical example of CISC deploys multiple immediate lengths per in-
struction, some of them even with their own opcode. Also noteworthy is the fact that the length
of the instruction word depends on the size of the immediate used (which is by the way not
uncommon for CISC machines, since they deploy this mechanism already to be able to encode
various addressing modes)

5.2.2 RISC

As an example for immediates used in a typical RISC (“Reduced Instruction Set Computer”)
machine, we take the PA-RISC2.0 architecture from HP [PH97]. The following table lists some
instruction formats of the PA-RISC2.0:

opcode source reg 2 result reg immediate

25 20 15 4 031

register-immediate

source reg 1 source reg 2 opcode extension result regopcoderegister-register

Figure 5.1: PA-RISC2.0 instruction format

Interesting features to point out here are:
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1. All PA-RISC2.0 instructions are 32 bits wide. This already constrains the ways to encode
an immediate in an instruction.

2. All instructions of a certain class have the same structure, with fields that specify source
and destination registers, immediate constants and opcodes in the same bits of the instruc-
tion word.

3. Constants in register-immediate operations are always 16 bits long. This implies that
the PA-RISC2.0 architecture cannot do direct arithmetic operations on constants larger
than 16 bits. If it needs larger constants, then these have to be either constructed from
smaller values, or stored in memory and loaded in a register, so that register-register type
operations can be used.

5.2.3 VLIW

As in introduction to immediates in the MOVE architecture, a look at how typical VLIW (“Very
Large Instruction Word”) machines handle immediates is very useful, as the actual instruction
word format of the MOVE resembles a VLIW very much. VLIWs are by design bound to
the same principle of RISC: All instructions in an instruction word have to be the same size.
Actually, a VLIW is nothing more (from an instruction word encoding point of view) than a
series of RISC instructions (sometimes called ’atoms’ or ’slots’) concatenated. Examples of
VLIWs are:

� The Intel IA-64 architecture (3 issue). This is not a genuine VLIW, but has interesting
properties, also in relationship to MOVE.

� The Philips Trimedia (5 issue). The Trimedia is a DSP chip, MOVE is also targeted
towards DSP applications.

� Texas Instruments C6x series (8 issue). The TI C6x series is also a DSP architecture.

We will discuss the IA-64 architecture in greater detail now:
The Intel IA-64 architecture, albeit not a genuine VLIW, is a VLIW based architecture, called

the EPIC1 architecture, and has a special type of operation called ’Extended’, in which two slots
together form a 60 bit immediate suitable for e.g. address displacements in a relative branch. A
so called “template” of 5 bits at the beginning of the instruction word contains, amongst other
information, information on what kind of instructions the various slots contain [Int00]. Note that
you will see that the solution for immediates in the MOVE framework resembles the solution
that the developers of the IA-64 architecture came up with.

Figure 5.2 shows a sample of IA-64 instruction format. The template “t” specifies what kind
of instructions each slot contains. The special “instruction”L+X indicates that this slot encodes
long immediate bits. The other instructionsA, B and
M represent other type of instructions, like ALU instructions, branch instructions or memory
instructions.

1Explicit Parallel Instruction Computing
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A AL

A I B

t

t

t

M L+X

Figure 5.2: Sample IA-64 instruction stream; 128 bits wide

5.3 Immediates in MOVE

This section explains what the existing state of the implementation of immediates in the MOVE
architecture was until now. Also, some key problems of the current state are highlighted, so
a good motivation for a new implementation can be formed, before a new way of handling
immediates is presented in chapter 6

5.3.1 Existing implementation

The MOVE architecture is from a instruction encoding point of view a VLIW. That means several
fixed-width operations are concatenated to form a wide instruction word, with one slot per data
transport (as opposed to one slot per functional unit in regular VLIWs). So we have the same
problems as current RISCs and VLIWs have, as they were presented in the previous section. To
highlight a few:

1. Fixed width slots. If an immediate is larger than the instruction slot width, one cannot
encode the whole immediate in one slot. And this is without taking into account the space
needed for the opcode, a destination register, et cetera.

2. Fixed instruction formats. Since MOVE has a standard instruction format to make the job
of the Instruction Decode unit as simple as possible, it’s not possible to assign arbitrary
fields of a slot to immediate bits.

Some other considerations that make MOVE instructions different from other architectures:

1. Since a move consists of only one data transport, the only part of the instruction that can
contain an immediate is the source of the move. This is different from an OTA based RISC
architecture, where we usually have three operands: Two source operands, which both can
contain an immediate, and a result operand, which cannot contain an immediate. Some
instructions don’t even have a result operand (e.g. the jump instruction).

2. There is no opcode field for the whole operation in a move. This makes it harder to
actually let the processor know we have an immediate in a move instead of a reference to
a functional unit socket.

The current solution offered for immediates in MOVE is the following:
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1. Immediates shorter than the space reserved for the source socket can be encoded in the
source field of the move itself. This is done by reserving part of the opcode space of the
source field for constants. We call this type of immediate the “short immediate”.

2. Immediates larger than the short immediate are placed in one or more reserved fields that
are concatenated at the end of the instruction word. This is encoded by added sockets to
the instruction set, one for each immediate field you add to the instruction word. Each
cycle the immediate fields are read (even if the actual information in that field is void in
that cycle) and placed in an “immediate register”, which resides in the Instruction Fetch
Unit. A source field of a move then can address the socket connected to that immediate
register to use the immediate value.

This solution is visualized in figure 5.3.

i0

move move move move immediate

Figure 5.3: Dedicated immediate slot in instruction word

Algorithm 1 is a pseudo algorithm of the current long immediate scheduling, as performed
in the functionFindImmMoveBus . First, it is checked whether an immediate is able to fit in
the source field of a move. If so, the standard movebus-allocation code is called. This allocation
code includes adding a candidate mask for this move to the cycle and check via the Bipartite
Matching Algorithm if a correct schedule is possible. If the immediate fits and the move can be
scheduled correctly, a success is returned. If the move doesn’t fit in the source fields, we have a
long immediate. All immediate registers are then iterated. For each immediate register, a check
is done if the immediate register can hold the immediate under schedule. If this is also true, all
that remains is check the movebus allocation with the candidate mask that relates to the chosen
immediate register. By claiming the move and the immediate register, the dedicated field that
contains the actual immediate bits is claimed implicitly.

The approach that is currently used for implementing immediates in MOVE suffers from
various drawbacks that limit the optimal use of resources offered by the MOVE architecture.
These drawbacks are:

1. Since every move instruction word contains a fixed immediate field, in cases where there
are no immediates used, this field stays empty and bits in the instruction stream are wasted.
Especially in embedded processors, program memory space is costly.

2. Since one move instruction word can contain only a limited number of (long) immediates
(usually one), moves might have to be scheduled in another cycle, only because the long
immediate value can not be put in that cycle, while all other resource requirements are
met.
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5.3.2 Possible solutions

Because of above mentioned problems, a new scheme to implement immediates in MOVE had to
be devised, one which would address above mentioned limitations of the current implementation.

Initial thought on a new implementation can be read in [LC95]. This document describes
basic options for implementing long immediates, without caring too much about practical im-
plementation.

The following basic options for encoding long immediates were considered:

1. Larger source. Extend the size of the whole move slot to accommodate for the whole
immediate to fit in the source field of the move.

2. Add adedicated immediate fieldto the move instruction format. This is actually the
implementation used historically, but has many problems, as seen in the previous section.

3. Usemultiple instruction formats . This could be either replacing some move slots in the
instruction word with immediate bits, or replacing a whole instruction word with imme-
diates bits. The latter is the solution chosen by the “MicroMove” implementation of the
MOVE architecture.

4. Immediate construction. Various move source fields (which can contain only a limited
number of bits) can together make up one large immediate. This can be done eitherse-
quential or in parallel.

For a more in-depth discussion on these solutions, please see˜citelimmoptions. This docu-
ment also contains a preliminary overview of properties of above mentioned solutions, which
will be repeated for clarity in table 5.2.

property Source Dedicated Multiple Sequential Parallel
fields imm. fields instr. formats imm. construction imm. construction

area + + + – +
instr. bandwidth – – � + �

move bus utilization + + – – –
latency + + + – +

Table 5.2: Properties of long immediate encoding options, qualitative indication

As concluded by the document, a practical solution would probably be a combination of the
basic ideas of this table. So far, two implementations have been made. The first, dubbed the “re-
source variant”, which is the one that this report is about, had a set of additional requirements,
see section 5.3.3. The other implementation, dubbed the “pseudo-move variant”, has been im-
plemented by TNO-FEL. This implementation, and its performance in relation to the “resource
variant”, can be found in section 8. Both variants use a combination of the “multiple instruction
format” and the “parallel immediate construction” ideas. The rest of this chapter will discuss the
road to the “resource variant”, and the next chapter will discuss its implementation.

5.3.3 Requirements of a new implementation

A list of requirements of the new immediate implementation was made:
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The instruction stream

1. An immediate that does not need more bits than the source field of the move should not
take any space outside that move. This is what we call a “short immediate”. The other
requirements listed deal with the concept of a “long immediate”, i.e. an immediate that
does not fit in the move itself.

2. If an immediate does not fit in the source field of a move itself, extra bits of the instruction
stream are needed. Preferably, these extra bits should be drawn from unused bits in the
instruction stream.

3. A reserved slot just for immediates is optional, as these would be wasted in case there is
no immediate to be scheduled.

4. A decoupling between immediate value and its move introduces extra state, which needs
to address two things: A dependency between the immediate value and its move, and
a bookkeeping mechanism that keeps track where the immediate value is placed in the
instruction word and the instruction stream.

The scheduling algorithms

The newly implemented algorithms should interfere as less as possible with the also existing
scheduling algorithms. The current source has a lot of implicit assumptions that could cause
unwanted effects if the new algorithms aren’t made as stand-alone as possible.

The background of the assignment

Although the MOVE project needed a recode of the long immediate implementation because of
reasons mentioned in the previous paragraphs, the problem became more urgent when an actual
hardware implementation of the MOVE framework was to be deployed at NEC CCRL. The ma-
chine description of the NEC variant of the MOVE processor was already finalized. Although
the implementation would be incorporated in the standard MOVE scheduler, rudimentary perfor-
mance decisions were primarily made based upon a machine description of the NEC processor
core.

After careful review of all options, a combination of the “multiple instruction format” and
the “parallel immediate construction”, as explained in [LC95] has been chosen. The proposal
for this new implementation, called the “resource variant” can be found in section 6.2.
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Algorithm 1 FindImmMoveBus
// check to see if the immediate fits in the source field
for all destination socketsdo

for all movebusdo
if not immediate fits in source fieldthen

continue
end if
check other resources
if all resource demands metthen

add movebus to candidate mask
end if

end for
try movebus allocation
if movebuses are allocatablethen

add possible scheduling
end if

end for
if possible scheduling was foundthen

choose best possible scheduling
assign resources
return SUCCESS

else
// immediate didn’t fit in src field
for all immediate registersdo

if not immediate fits in immediate registerthen
continue

end if
for all destination socketsdo

for all movebusdo
check other resources
if all resource demands metthen

add movebus to candidate mask
end if

end for
try movebus allocation
if movebuses are allocatablethen

add possible scheduling
end if

end for
end for

end if
if possible scheduling was foundthen

choose best possible scheduling
assign resources
// by claiming the ireg, the dedicated move slot is automatically claimed too
return SUCCESS

else
return FAILED

end if



The resource variant 6

This chapter will explain the implementation of the new long immediate encoding, the “resource
variant”, in the MOVE scheduler. During the discussion of the implementation, various design
decisions will be explained and motivated.

First, in section 6.1 some basic information on the MOVE scheduler will be discussed, so
the context of the implementation will be clear. In section 6.2 the actual proposal of new data
structures and algorithms for the “resource variant” will be discussed.

For an extensive reference to the MOVE scheduler’s algorithms and data structures, please
read [Joh96].

6.1 Internal workings of the MOVE scheduler

Before we can start a discussion on the long immediate implementation, an understanding of the
compiler internals is needed. The whole package “MOVE compiler” consists of several parts.
Please refer to section 2.1.4 and in particular figure 2.5 to get a broad understanding of the
compiler trajectory. In the next paragraphs we will discuss each part of the compiler and how
immediates fit in.

6.1.1 GCC front-end

The front-end of the compiler trajectory is based upon GCC, version 2.7.0. It has been ported
to a generic MOVE target. This target is representing intermediate move assembly code, packed
in a binary format loosely based on the m68k a.out binary format. It features a serial stream of
move instructions, working on a virtual machines that has enough registers to avoid spilling. The

45
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source field in the binary format is 32 bits wide, and as such the problem of “long immediates”
is void here, as all immediates fit in the source field of the move. Here we assume the MOVE
architecture has a maximum width of 32 bits, an assumption that holds throughout the whole
MOVE framework at this point.

The front-end does not know anything about the immediate sizes of the target machine, and
as such, can not distinguish between “short” and “long” immediates. This is not needed, since
the front-end has no idea on how the instruction stream will be after scheduling. The problems
stated in section 5.3.3 do not apply here.

It is not needed to explain the inner workings any further, it suffices to note that the emitted
binary contains the immediate in the source field of the move, annotated with a flag that indicates
whether the source field contains an immediate or a socket.

The a.out instruction format is the following:

#if HOST_LITTLE_ENDIAN
short dst;
char imm; // the immediate flag
char grd;

#else
char grd;
char imm; // the immediate flag
short dst;

#endif
int src;

6.1.2 Scheduler

For a more in-depth working of the scheduler, please read [Cil00]. What will be discussed here
is an overview on the scheduler’s workings focused on the immediate support.

For a good understanding on how the Long Immediate algorithms hook in the Scheduler, al-
gorithm 2 will briefly give an overview on the main loop of the scheduler. The algorithm iterates
through each dependency-free move in each basic block of each procedure of the program, and
will try to schedule that move. (A move is a node in the scheduler’s Data Dependency Graph).
To schedule, cycles are searched for enough resources, including units, sockets, and buses. If all
requirements are met, a schedule is successful and a next node will be scheduled.

This is of course a gross simplification of the algorithm, but it shows in what steps a move is
scheduled. For ease of understanding, issues like register allocation, backtracking or importing
are left out, since they’re not related to the long immediate implementation.

6.1.3 Simulator

The simulator can be split in two parts: A so-called “serial” simulator and a “parallel” simulator.
The serial simulator simulates the serial code as it was read in by the binary reader. This

is nothing more than the exact binary code that the front-end emits. As we already discussed
above, all immediates are considered equal and “short”. Since the serial simulator only works
on the code emitted by the front-end, unaltered by the scheduler, the immediate problem does
not apply here, just as it didn’t apply to the front-end of the MOVE compiler. All back-end code
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Algorithm 2 Scheduler algorithm
1: for all procedure in programdo
2: for all basic block in proceduredo
3: switch (scheduling scope)
4: for all node = GetReadyOperationdo
5: switch (type of operation)
6: for all moves belonging tonode! operation do
7: computemin cycle andmax cycle of move
8: for cycle =max cycle downtomin cycle do
9: for all units that can handle operationdo

10: for all sockets that are connected to unitdo
11: check various resources (FindMoveBus() )
12: for all movebuses connected to socketdo
13: tentatively assign operation to this movebus
14: if movebuses are allocatable (AssignMBusses() ) then
15: return SUCCESS
16: end if
17: end for
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for
24: end for

that works with serial MOVE code, uses the MOVE code as provided by the GCC front-end, i.e.
immediates always fit in the source field.

The parallel simulator simulates the code after it has been scheduled. It performs a cycle-
accurate simulation of the scheduled “VLIW”-like code. Algorithm 3 shows the current parallel
simulator algorithm. Note that thewhile(not quit) loop will be broken when an exit
statement in the code is detected and thequit flag is set (in a different function).

As you can see the simulator is not completely cycle-accurate because immediates are read
from the source field of the move, instead of making a distinction between short and long imme-
diates. Short immediates are indeed read from the source field. Long immediates however are
read from the immediate slot that was concatenated at the end of the instruction. Even without a
new implementation, a better way to handle this would be decoupling the use of the immediate
and the process of reading the immediate value from the instruction stream and storing it in a so
called “immediate register”. This register is then read when the immediate is used (which is for
now, always in the same cycle).

6.1.4 Binary writer

The binary writing was also developed at NEC, concurrent with the initial work on the long
immediates. Various hierarchicalOutputBinary() functions iterate through the whole pro-
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Algorithm 3 SimulatePar(Proc*, int offset)
1: instruction = SkipEntryInstructions(proc,offset)
2: block = instruction-¿blck
3: while not quit do
4: for all move in instructiondo
5: get src value from either register, immediate or functional unit
6: put value on movebus
7: end for
8: for all move in instructiondo
9: get value from movebus

10: if register type == operand/trigger registerthen
11: feed value to operand/trigger register
12: end if
13: if register type == jump/call/trapthen
14: set jump latency counters
15: end if
16: end for
17: advance functional unit pipelines with one cycle
18: update jump latency counters
19: if one of the jump counters == 0then
20: jump accordingly to address
21: else
22: instruction++
23: end if
24: if end of basic block reachedthen
25: get default successor block and make it current
26: instruction = first instruction from new block
27: end if
28: end while

gram.
OutputBinary(ostream &, Insn *) is the function that is responsible for out-

putting instruction words. It is called for every instruction in a basic block. This function
has always included some support for the new long immediate implementation, because it was
developed when the initial data structures were already specified. The original algorithm of
OutputBinary(ostream &, Insn *) can be read in algorithm 4

6.2 The resource variant

In this section, the new implementation of immediates in the MOVE framework will be dis-
cussed. Certain design decisions imposed by the list of requirements in the previous chapter will
be explained. Basically, the following implementation method is chosen: (figure 6.1 illustrates
this implementation)
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Algorithm 4 OutputBinary(ostream &, Insn *)
1: allocate aBitArray to hold the bits for this instruction word
2: for all moves in this instructiondo
3: call OutputBinary(ostream &, Move*)
4: add this slot to the list of occupied slots
5: end for
6: for all slots not in list of occupied slotsdo
7: encode aNOPto this field
8: end for

1. Just as in the existing method, placing the immediate in the instruction stream and using
the value from the immediate register are decoupled. We call the former action the “IReg
Write” (immediate register write) or “Immediate Define” and the latter action the “IReg
Read” or “Immediate Use”.

2. The dedicated immediate slot at the end of an instruction word can be replaced by reserved
slots for immediates in the instruction stream. Certain move slots in the instruction word
now can either be a move, an immediate or a part of an immediate.

3. To bookkeep this, every instruction word gets a tag, usually of the length of a couple of
bits. The tag is called Long Immediate Control Tag, or “LIT” when abbreviated. This tag
specifies which move slots contain immediates and to which Immediate Register they are
written

4. The new Long Immediate Control Tag logically contains a list of so called “Long Imme-
diate Micro Operations”, which basically specifies a bit mask that indicates which move
slots are occupied by immediate bits in that cycle, and to what immediate registers these
slots are written. One LIT tag can contain multiple micro operations, and this way a LIT
can write more than one Immediate Register at a time.

5. When the Instruction Fetch Unit reads the tag, and immediates are detected, the Unit
fills the appropriate Immediate Register with the value from the instruction word. One
immediate can be constructed out of multiple move slots. In this case, the move slots
making up that one immediate must be scheduled in the same cycle.

6. There is no need to use the immediate in the same cycle. The Immediate Registers are part
of the state of the machine.

7. When the immediate is used, the source socket will be that of the appropriate Immediate
Register, and its value will be placed on the move busses.

8. Although a long immediate occupies a move slot, it is not represented in the move list
of a cycle. (the move list is the data structure that holds a list of moves per cycle in the
scheduler). A long immediate is only defined by the presence of a LIT tag at that cycle.

6.2.1 GCC front-end

As explained in the previous section, the front-end needs no adaptations for the new long imme-
diate format.
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Figure 6.1: Scheduling of long immediates

6.2.2 Binary reader

The binary reader needs no adaptations either, since immediates are processed and converted
only by the scheduler. As said, all serial MOVE code in the back-end has its immediates in the
source field of the move.

6.2.3 Mach file

The MOVE framework uses various auxiliary files during scheduling. One of the most important
ones is themach file, the machine description file. This file specifies how many movebuses, how
many sockets, which functional units, etcetera, a specific instance of the target architecture has.

This file also specifies how many Immediate Registers the specific architecture has. This
used to be a very simple specification, because it only had to specify the number of Immediate
Registers and their size and socket. The place in the instruction stream where the immediate
bits would end up was already determined, in a dedicated immediate field next to the instruction
word.

Now themach file has to specify:

1. How many immediate registers there are, together with their sockets, size and whether
they are signed or unsigned (this is identical to the old situation)

2. The specification of the LIT tag, which indicates how Immediate Registers are written, by
means of the so called “micro operations”.

An example of the old format and the new format follow, after which a formal specification
of the new format will be presented. This example reflects the PcomP specification.

The old format specifies three immediate registers, and implies three dedicated fields:

ImmediateUnits
{

i1 32, signed, ir_1;
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i2 20, signed, ir_2;
i3 20, signed, ir_3;

}

The new format specifies the same three immediate registers, but now the “Control” field
specifies how these three immediate registers can be written to, by means of an encoding in the
LIT tag:

LongImmediate
{

Registers:
i0 20, signed, ir_0;
i1 20, signed, ir_1;
i2 32, signed, ir_2;

Control:
{};
i0 20 : { 4 };
i1 20 : { 5 };
i0 20 : { 4 }, i1 20: { 5 }, i2 32: {4,5};

}

The long immediate specification is specified in theLongImmediate block. Inside, the
following formal specification is used:

The first part, which is similar to the existing format, is introduced by ’Registers: ’ and
contains lines of the format:

<ir_name><immediate_length>,<immediate_signed>,<sock_name>;

the second part is introduced by ’Control: ’ and contains lines of the format:

[<ir_name>:]{[<slot_num>[,...]]}[,...];

the labels have the following meanings:

ir name A string which gives the name of the immediate register.
immediate length An integer which indicates the length of the immediate register.
immediate signed A member of the setfsigned,unsignedg which indicates whether the

immediate bits should be sign- or zero-extended toimmediatelength.
sock name The name of the socket to which the immediate register is connected.
slot num An integer which indicates the instruction field (move slot or immediate

reserved field) from which the immediate bits are read. A comma sepa-
rated list of field numbers specifies that the immediate is constructed by
concatenating the field contents. This integer is counted from zero.

Each line of the control part can contain one or more comma-separated elements. An ele-
ment, calledmicro-operation, specifies three things: (1) the destination immediate register, (2)
a number before ’:’, which specifies the number of significant bits contained in the instruction
field(s), (3) the list of fields from which the immediate bits are read. Bits from these fields are
concatenated to form one long immediate.
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An important special case is the empty line, in which no immediate register and no field
list is present. This line represents a “no-operation”, whereby no immediate register is written
(reserved fields are wasted, but move slots are all available for transport programming). An
empty linemustbe present if there is more than one line in the control part. This specifies that
no immediates are written in that cycle.

6.2.4 Data structures

The MOVE scheduler uses four main data structures to hold the state of the machine, the program
and the scheduling. They will be introduced here and the changes needed by the new long
immediate implementation are mentioned.

For a complete reference to the changed data structures, see appendix B.

6.2.4.1 Mach

The Mach class contains the machine description. The class is defined in filemach.h . It
completely describes the target machine.

LImmControl The Mach class is augmented with a structure calledimmctrl of type
LImmControl . This is the class that implements the tag in each instruction that gives in-
formation on what move slots in the novelist represent immediates or parts thereof, and whether
they are signed or not. Its data members are:

� int slots , which defines the bit mask of written slots. Theint slots member is
nothing more than an OR’d mask of individual bit masks of each Micro Operation.

� LImmMOpList mops , which contains a list of Micro Operations.

LImmMOp Class LImmMOpis the atomic “Long Immediate Micro Operation” that writes
to an Ireg from a certain bit mask. Its main members:

� nbits , which specifies how many bits this operation can write.
� slots , which contains the bit mask that specifies which move slots contain immediates

bits.

IReg Class IReg is the class that implements the Immediate Register. It is amended with a
data members and three member functions to read that data. The data member is:

� LImmMOpList mops , which lists all Micro Operations that can write to this IReg.

The member functions are:

� IsImmediateFits(Move*) and IsNotImmediateFits(Move*) , which
take aMove and return a boolean indicating if the immediate in that Move fits in the
IReg

� LImmMOpIter PossibleEncoding(int size) , which returns a pointer to the
first micro operation that can write this IReg and encodes at leastsize bits.
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6.2.4.2 Prog

TheProg data structure holds the scheduled information of the program. Its substructures are
Proc , Blck , Insn andMove, for respectively the procedures, the basic blocks, the instruction
words and the individual moves.

� We now amend theInsn with a pointer to oneLImmControl instance, to implement the
presence of the LIT tag. This way, a scheduled instruction has the necessary information
to know which move slots are occupied by immediates by means of theslots member
of the LImmControl class.

� We also amend theInsn with a list of data flow edgesDFlow of immediate uses, so we
have an easy way to find the use (i.e.IReg read) or uses of an immediate.

� TheMove class is augmented with a back-pointer to theInsn where the immediate was
defined.

6.2.4.3 RTabEntry

TheRTabEntry data structure holds all resource information on each cycle during scheduling.
This includes state like occupied sockets, move busses, immediate registers and state of the
function units in that cycle. It also provides functions to claim or release resources.

� TheRTabEntry structure is also amended by aLImmControl pointer. This way, a
cycle under scheduling has all the necessary information on the use of immediates in that
cycle.

� Also, theRTabEntry structure’s functions that operate onIReg s are extended so that
the array that holds the occupation ofIReg s now is implemented with a reference counter
instead of a boolean. This eases the amount of work needed if immediate-sharing is ever
implemented. Immediate-sharing means that a long immediate is only defined once in
the instruction stream and only once written to theIReg , but used multiple times by
subsequent reads from thisIReg . More information on this in section 7.2.2.

6.2.4.4 DDG

The DDGis the Data Dependency Graph and holds all interrelations between moves and basic
blocks during scheduling. A move is represented by the classNode and a basic block is repre-
sented by the classSNode. Since we have implemented the long immediates as nothing more
than a presence of a LIT tag, there is no need to change theNode or SNode classes.

6.2.5 Scheduler algorithms

Now that we have all extensions to the data structures explained, we will explain the modifica-
tions made to the existing algorithms and we will discuss all new algorithms. As stated in the list
of requirements, our goal was to interfere as less as possible with the existing algorithms. This
is done mainly by two design decisions:

1. All scheduling of long immediates is done after the long immediate use is scheduled. The
last step in scheduling a move is finding a movebus for it. So inFindImmMoveBus we
add the hook that will schedule the IReg Write.
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2. All operations performed on the list of moves in a cycle do not know about the presence
of a long immediate, since it is not in the move list at all. It turns out the only place where
allocation of moves into slots is done is during theMarriage function (which is called
from RTabEntry::AssignMBusses() ). This function is called with a testing-flag,
which is true when this function is called during scheduling and false when this function
is called after scheduling, during placement. By replacing the real move list (implemented
by thecand mask andnmoves index) with a pseudo list that includes bit masks for long
immediates, we have a atomic and stand-alone way to check for resource requirements of
movebuses.

The rest of this section will discuss the algorithms used during scheduling and unscheduling.

6.2.5.1 Scheduling

The main algorithm associated with the long immediate implementation is the immediate write
scheduling algorithm. We will present all algorithms and helper functions here.

The name “resource variant” already indicates that immediates are not represented by
(pseudo-)moves but only by a resource claim in theRTabEntry table. An immediate in the
serial code (e.g.#456 -> add o) is split in half: i?? -> add o (the immediate use) and
#456 -> i?? (the immediate write)1.

This split will be made in the inner-most loop of the scheduling algorithm, which is
FindImmMoveBus()

The overall algorithm is presented first in algorithm 5, after which various parts will be
explained in detail. This algorithm can be compared to algorithm 1 and differs from it in the
following ways: After the resources on the immediate register are checked, and a possible move
bus allocation (with the candidate mask relating to the chosen immediate register), there is not
commit yet, but a tentative assignment. From that point, a cycle from the current cycle down
to cycle zero is searched in which the immediate bits can be written. For each cycle on in that
write-read (def-use) chain, the resources on the immediate registers are checked, and a check for
a suitable encoding is checked. The latter is done by tentatively assigning a new LIT tag and see
if the movebuses in that cycle are still allocatable, as well as a check if all existing immediate
writes in that cycle are still preserved. If all these checks succeed, the immediate write and
immediate use are declared “final”, and the function will return “success” on the schedule of that
immediate.

The implementation for this algorithm has been coded in 5 functions:

1. FindImmMoveBus , taking care of the search for an Immediate Register and claiming all
resources for the immediate use.

2. ScheduleLImm , taking care of iterating through the cycles and checking on ireg re-
sources in cycles between the read and write of the immediate.

3. FindIRegWriteBus , taking care of tentatively assigning a LIT tag and claiming the
Immediate Registers in the path between the read and write of the immediate.

1#456 here represents an arbitrary immediate larger than the maximum size for a short immediate, andi??
represents an arbitrary immediate register



6.2. THE RESOURCE VARIANT 55

Algorithm 5 Overall scheduling of long immediates
FindImmMoveBus()
try to fit immediate in src field as short immediate
if not fits then

for all iregsdo
assign socket of ireg to source socket
check resources on ireg
if possible allocation for immediate use foundthen

tentatively claim resources for immediate use
for this cycle downto mincycledo

check if ireg is still free
check if encoding is available
tentatively assign LIT tag
if movebuses allocatablethen

commit schedule of immediate use and write
return SUCCESS

end if
end for

end if
end for

end if
return FAILURE

4. IsLImmControlValidSubset which can determine if a tentatively assigned LIT tag
indeed encodes all bits needed for the immediates currently under schedulingand still
encodes immediates that were already scheduled in that cycle

5. RTabEntry::AssignMBusses , a function now extended with functionality that
makes sure that long immediate fields also are taking into considerations when a move
list is mapped on move buses.

We will now go into detail on each of these 5 functions.

FindImmMoveBus In FindImmMoveBus() an immediate register is chosen and
ScheduleLImm is called. If this returns with a success return code, the immediate register
is claimed and scheduling is successful. The pseudo code is can be read in algorithm 6.

ScheduleLImm TheScheduleLImm function is responsible for iterating through all cycles
in order to find a suitable cycle for the immediate write, i.e. a cycle where the immediate bits can
be encoded. To check if a certain cycle is suitable, it first checks if the Immediate Register that
was chosen is still available and then checks if the resources for the immediate write by calling
FindIRegWriteBus . The pseudo code for this algorithm can be found in algorithm 7.

FindIRegWriteBus The functionFindIRegWriteBus takes care of choosing a suitable
LIT tag. It can do this by upgrading an already existing LIT to one that encodes the mi-
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Algorithm 6 FindImmMoveBus(move, cycle)
try to fit immediate in src field as short immediate
if not fits // try to schedule a long immediatethen

for all ireg do
replace srcsock with socket of ireg
check resources on ireg
if possible allocation for immediate use foundthen

add ireg to list of possible iregs
end if

end for
for all iregs in possible-iregs-listdo

tentatively claim resources for immediate use
call ScheduleLImm
if ScheduleLImm succeedsthen

make iregs resource claim permanent
return SUCCESS

end if
end for

end if

Algorithm 7 ScheduleLImm(readnode, ireg)
for cycle = readnode-¿cycle downto zerodo

if ireg in this cycle is busythen
return FAILURE

end if
if FindIRegWriteBus succeedsthen

return SUCCESS
end if

end for
return FAILURE

cro operations as specified by the existing LIT as well as the micro operation that can write
to the immediate register currently under scheduling. It does this by means of the function
IsLImmControlValidSubset . If these tests all succeed, it tentatively assigns that LIT tag
to the cycle and checks if all the movebuses are still allocatable. If all this succeeds, this func-
tion returns a success return value. The pseudo code forFindIRegWriteBus can be found
in algorithm 8.

IsLImmControlValidSubset The function IsLImmControlValidSubset is perhaps
one of the trickier algorithms discussed here. It takes three arguments, two LIT tags and an
immediate register. It has two tasks. One is to check if a certain LIT tag can encode all immedi-
ate registers that another LIT tag can encode, plus the immediate register passed to the function.
The other one is its dual, namely to check if a certain LIT tag can encode all immediate registers
that another LIT tag can encode,exceptthe immediate register passed to the function. Both tasks
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Algorithm 8 FindIRegWriteBus(writecycle, readcycle, ireg)
if current LIT already writes this ireg (as a side effect)then

return FAILURE
end if
for all micro operations that write this ireg and can encode enough bits for this immediatedo

fetch the accompanying LIT tag
if not IsLImmControlValidSubsetthen

continuewith next micro operation
else

tentatively assign new LIT tag
if move buses are allocatable // call AssignMBussesthen

for cycle = writecycle downto readcycledo
claim RTabEntry-¿ireg

end for
return SUCCESS

else
revert to old LIT tag

end if
end if

end for
return FAILURE

can be done by the same function, and you can get the dual function by swapping the two LIT
tags on the argument list. Pseudo code forIsLImmControlValidSubset can be found in
algorithm 9.

AssignMBusses The member functionRTabEntry::AssignMBusses is responsible for
checking if a certain set of moves, together with their constraints on connectivity of their sockets
to move buses, can be mapped on the move buses. For this, it uses the “Marriage” algorithm,
also known as the “Bi-partite Graph Matching Algorithm”.

Each move in the move list has a mask that indicates which move buses it can be scheduled
on. (this is because normally, a MOVE processor has no full connectivity between sockets and
move buses.)

In the original situation, one would call the marriage function with the graph of edges be-
tween move buses and moves, and see if one can find a bi-partite mapping of this graph.

The problem we now have is that long immediate writes, although not part of the move list,
do occupy slots in the instruction word, or equivalently, buses on the transportation network. For
this, theAssignMBusses function is extended with a small routine that temporarily adds a
mask for each long immediate write, thus creating a “pseudo move”, before calling the marriage
function.

Since the mask for this slot only contains the slot itself, this will be the only mapping the
“Marriage” function can find. The result is that the Marriage function cannot map any other
move on this bus anymore, which is exactly the desired behavior.

After the marriage function is called, these “pseudo moves” are removed, in order to restore
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Algorithm 9 IsLImmControlValidSubset(LIT super, LIT sub, ireg cur)
for all iregsdo

if this ireg is not written by subthen
if this ireg is written by superthen

if this ireg is the “cur” iregand this ireg is busythen
return FAILURE // super LIT defines too much

else
continue // this is the ireg that was supposed to be added

end if
else

continue // this ireg is not involved at all
end if

else
// this ireg is written by sub
if this ireg is not written by superthen

return FAILURE // super LIT is not a superset
else

// current ireg is written by both LITs
if the micro operations from both the super and the sub LIT can encode the same
number of bitsthen

continue // this ireg has passed the compliance test
end if

end if
end if

end for
// at this point we have checked all iregs for compliance
// and they all passed
return SUCCESS

the original move list and masks.

The new pseudo code for this function can be found in algorithm 10.

Algorithm 10 AssignMBusses(RTabEntry)
for all move busesdo

if move bus is in theslots list of the LIT tagthen
add mask with this bus to the set of mask
increment the number of moves in this list

end if
end for
perform the marriage function
restore the old move list
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6.2.5.2 Unscheduling

During scheduling, it is possible that the scheduler needs to come back on previous decisions to
schedule. During bypassing, for instance, the bypassed node is declared “dead”, or “killed”, but
if the bypass doesn’t succeed in the end, that node needs to be declared “unkilled”.

KillNode The process of unscheduling nodes is done by the functionKillNode() Nor-
mally, unscheduling a node involved releasing all resources occupied by that node. Note that
although resources in theRTabEntry table are released, but all information on these resources
is still preserved in the data members of theMove. These data members include thecand mask
for the movebuses, thesrc sock and thedst sock and finally theireg which indicates
what Immediate Register was used. The process of unscheduling nodes is done by the function
KillNode()

The extension made toKillNode() is that, instead of just releasing the Immediate Reg-
ister in the current cycle, we also look up where the immediate write was performed and we
release all resources (LIT tag, immediate register claims) related to this immediate read. For
this, we define a helper functionLookupIRegWrite .

LookupIRegWrite The functionLookupIRegWrite will find a defining cycle for a given
ireg, and will optionally release all resources associated with this immediate read. It can be
views as the dual ofFindIRegWriteBus .

It will do this by iterating through the cycles from the read node downwards. We release
(if asked) all immediate registers found, until we find a cycle that has a LIT tag that writes
to the immediate register in question. At that point, we (if asked) downgrade the LIT tag
to another tag that still writes to all immediate registers that the original did, except for the
immediate register that is being released. Here we can profit from the dual functionality of
IsLImmControlValidSubset .

The pseudo code forLookupIRegWrite can be found in algorithm 11. The algorithm
takes as in-arguments the ireg that needs to be released, the read-node and a boolean that indi-
cates whether we are only looking up the write or that we are actually releasing all resources
associated with this ireg. The function returns thesnode (basic block) and the cycle where the
LIT tag was found.

UnkillNode Because killed moves are simple marked “dead”, but not actually removed from
the schedule, it’s very easy to reschedule deleted nodes. The functionUnkillNode() just
claims back all resources used by theMove to be unkilled in the correspondingRTabEntry() .

A relevant problem of the new long immediate encoding is that it makes immediate registers
a multiple-cycle resource, like general purpose registers, and multiple-cycle resources are more
difficult to manage. When the def-use chain of the immediate write and use are killed, a release
of the resources implicates that all information on where the immediate write was scheduled is
lost.

That’s whyUnkillNode() has to completely reschedule the long immediate write by call-
ing ScheduleLImm() . The scheduler requires that any node that has been marked “dead” can
be successfully unkilled, this means that this call toScheduleLImm() can not fail. For-
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Algorithm 11 LookupIRegWrite(read-node, bool release, cycle, snode)
write-cycle = cycle
for cycle = write-cycle downto zerodo

if releasethen
release ireg in this cycle

end if
for all micro ops from LIT tag in this cycledo

if this micro op writes to the iregthen
we found the defining cycle
for all LIT tagsdo

if IsLImmControlValidSubset(current LIT, new LIT, ireg)then
assign new LIT
return SUCCESS

end if
end for
if no suitable LIT tag to downgrade foundthen

abort // this cannot happen
end if

end if
end for

end for
if no defining cycle found yetthen

abort // this cannot happen
end if

tunately, this is impossible, since it the state of resources between aKillNode() and an
UnkillNode() will not change.

Scheduling will be aborted whenScheduleLImm() fails, but this has never been observed
in any benchmark, so it is assumed that the assumption in the previous paragraph holds.

6.2.6 Simulator algorithms

During the discussion of the working of the simulator it became clear that only the parallel
simulator needs adaptation. The parallel simulator functionSimulatePar() was extended
with a global arrayireg[] that represents the state of the Immediate Registers. For each cycle
this array contains the values of the various Immediate Registers. The algorithm is also changed:

1. At the beginning of each cycle, a check for a LIT is done, and if found, theireg[] array
is filled with the appropriate values. This concludes the “immediate write” stage. Actual
values of immediates are found by following theDFlw iruses field of theInsn . Since
this is the exact same way that we build the binary in the binary writer stage, this method
represents a valid way of looking up actual immediate values.

2. During the processing of each move, when an immediate source is detected, the original
action was to put the value of the src-field of that move on the movebus. This behavior
is still valid for long immediates, since the internal representation stores the value of the
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immediate in the source field, even if the socket related to that src-field now is an imme-
diate register socket. We now split this case in two separate cases: If the immediate is a
short immediate (no presence of amove->ireg pointer), we just copy the value of the
src-field to the movebus; but if the immediate was a long immediate, the appropriate value
from the ireg[] array is read and put on the movebus. This concludes the “immediate
read” stage.

Because the only architectural visible change to the system was the presence of Immediate
Registers, the adaptation to the parallel simulator was very straightforward.

The changes to the algorithm are explained in algorithm 12, please refer to algorithm 3 for
the original algorithm.

6.2.7 Binary writer

The binary writer’s classes need to be extended with functionality for writing the LIT tag at the
beginning of the move instruction word, and with functionality for filling move slots with actual
bits if this move slot contains immediate bits.

Themapgen utility checks themach-file for Long Immediates and extends the size of an
instruction word to accommodate for dedicated immediate fields, i.e. immediate fields that are
not shared with the normal move slots.

The initial version of OutputBinary(ostream &, Insn *) first allocates a
BitArray that represents the instruction word and usesOutputBinary(ostream &,
Move *, BitArray &) to fill all move slots. After that, it fetches theLImmControl
tag from the currentInsn . The functionality is extended by an algorithm that will compute
which move slots actually contain immediate bits and it will fill those fields with the value from
insn->iruses (the list of pointers to the moves that this instruction encodes immediate bits
for). The newOutputBinary(ostream &, Insn *) will be shown in algorithm 13.
Please compare to the original implementation as shown in algorithm 4.
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Algorithm 12 SimulatePar(Proc*, int offset)
1: instruction = SkipEntryInstructions(proc,offset)
2: block = instruction-¿blck
3: while not quit do
4: write immediate bits from long immediate fields inireg[]
5: for all move in instructiondo
6: if move is a long immediate readthen
7: get src value fromireg[]
8: else
9: get src value from either register or functional unit

10: end if
11: put value on movebus
12: end for
13: for all move in instructiondo
14: get value from movebus
15: if register type == operand/trigger registerthen
16: feed value to operand/trigger register
17: end if
18: if register type == jump/call/trapthen
19: set jump latency counters
20: end if
21: end for
22: pass “clock pulse” to functional units
23: update jump latency counters
24: if one of the jump counters == 0then
25: jump accordingly to address
26: else
27: instruction++
28: end if
29: if end of basic block reachedthen
30: get default successor block and make it current
31: instruction = first instruction from new block
32: end if
33: end while
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Algorithm 13 OutputBinary(ostream &, Insn *)
1: allocate aBitArray to hold the bits for this instruction word
2: // we first encode all long immediate bits in theBitArray
3: for all iruses pointers in this instructiondo
4: look up value to be encoded from src field in iruses-¿move
5: look up slots that write this ireg in this cycle
6: add slots to the list of occupied slots
7: encode bits into instruction stream.
8: end for
9: for all moves in this instructiondo

10: call OutputBinary(ostream &, Move*)
11: add this slot to the list of occupied slots
12: end for
13: for all slots not in list of occupied slotsdo
14: encode aNOPto this field
15: end for
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Long immediates review 7

This chapter will evaluate the implementation of long immediates as described in chapter 6.
This will be done by means of a quantitative benchmark which will evaluate instruction count
and code size . Also, this chapter will present a comparison with an equivalent, independent,
implementation of long immediates. Lastly, motivations and guidelines for future work on the
long immediates support are given.

7.1 Performance review

This section will give a quantitative review of the “resource variant”. First, an overview on the
used benchmark suite and the machine descriptions are given. Then, the actual data is presented
in several graphs. Subsection 7.1.3 will draw some conclusions from the gathered results.

7.1.1 The benchmark suite

The implementation was tested with four different machine configurations. The relevant parts of
those machine descriptions can be found in appendix C. A quick overview on the specifics of
these mach files:

1. mach.pcomp , the PcomP architecture for which this implementation was written origi-
nally. It features 6 buses, and 3 immediate registers. Two 20-bit immediate registers can
be written in the same cycle via slot 4 and 5, or one 32-bit immediate register can be writ-
ten via a concatenated slot 4 and 5. (note that slots are counted from zero, so slot 4 and 5
are the two most significant buses).
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2. mach.one , the PcomP architecture with only 1 32-bit immediate register, which is writ-
ten from slot 5

3. mach.small , a small architecture with 3 buses and 1 32-bit immediate register.
4. mach.big , an architecture with 8 buses and 2 independent 32-bit immediate registers.

These 4 machine descriptions were benchmarked against the new “resource variant” and
against the old implementation with dedicated move slots. For the old implementation, the same
number of dedicated move slots were added to the machine description as the number of imme-
diate registers in the new variant. The benchmark suite consists of the following benchmarks:

� arfreq
� g722main
� music
� radproc
� edge
� expand
� flatten
� smooth
� cjpeg
� djpeg
� go
� compress
� m88ksim

The tests were conducted to measure the code-size, measured in number of instructions. This
means that in the new implementation, the number of instructions will increase, since normally
a dedicated immediate slot was used, where now the immediates are scheduled in the instruction
stream itself. But since the dedicated slots are not needed anymore, the instruction-word size
will decrease. Therefore also the multiplication of number of instructions and the instruction-
word size is presented. This metric gives a real indication of the achieved improvement in terms
of program memory savings.

The exact metrics of the 4 machine descriptions are presented in table 7.1.

number of move slot dedicated total width incl.
mach file move slots width total width fields ded. fields
mach.pcomp 6 20 120 32 152
mach.one 6 20 120 32 152
mach.small 3 32 96 32 128
mach.big 8 32 256 64 320

Table 7.1: Metrics of machine descriptions

7.1.2 The results

The four tables 7.2 to 7.5 will show the instruction count increase, and the total code-size when
the instruction count is multiplied by the instruction word length in bits. Both sets of measure-
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ments are also presented relative to the old implementation. Each table shows the results for one
machine description. Note that not all benchmarks are represented in each machine description.
Since the MOVE framework is a project still in development, not all benchmarks could complete
correctly. In that case that benchmark is removed from the suite for that machine description.
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old old new new relative relative
benchmark instr.count codesize instr.count codesize instr.count codesize
arfreq 988 150176 1005 120600 101.72 80.30
g722main 4057 616664 4214 505680 103.87 82.00
music 4085 620920 4163 499560 101.91 80.45
radproc 2613 397176 2675 321000 102.37 80.82
edge 4192 637184 4332 519840 103.33 81.58
expand 3926 596752 4029 483480 102.62 81.01
flatten 3269 496888 3373 404760 103.18 81.45
smooth 2950 448400 3067 368040 103.96 82.07
cjpeg 8409 1278168 8556 1026720 101.75 80.32
djpeg 9824 1493248 9996 1199520 101.75 80.32
compress 3571 542792 3696 443520 103.50 81.71
averages 102.72% 81.10%

Table 7.2:mach.pcomp benchmark results

old old new new relative relative
benchmark instr.count codesize instr.count codesize instr.count codesize
arfreq 984 149568 997 119640 101,32 79,99
radproc 2617 397784 2658 318960 101,56 80,18
edge 4255 646760 4354 522480 102,32 80,78
expand 4004 608608 4023 482760 100,47 79,32
flatten 3330 506160 3360 403200 100,90 79,65
smooth 3001 456152 3040 364800 101,29 79,97
cjpeg 8425 1280600 8511 1021320 101,02 79,75
djpeg 9855 1497960 9979 1197480 101,25 79,94
go 41035 6237320 41618 4994160 101,42 80,06
compress 3602 547504 3661 439320 101,63 80,24
m88ksim 12060 1833120 12155 1458600 100,78 79,56
averages 101.27% 79.95%

Table 7.3:mach.one benchmark results
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old old new new relative relative
benchmark instr.count codesize instr.count codesize instr.count codesize
arfreq 1160 148480 1237 118752 106,64 79,98
expand 4947 633216 5250 504000 106,12 79,59
flatten 4209 538752 4600 441600 109,29 81,97
smooth 3943 504704 4270 409920 108,29 81,22
cjpeg 11042 1413376 11517 1105632 104,30 78,23
compress 4357 557696 4638 445248 106,45 79,84
averages 106.85% 80.14%

Table 7.4:mach.small benchmark results

old old new new relative relative
benchmark instr.count codesize instr.count codesize instr.count codesize
arfreq 1078 344960 1082 276992 100,37 80,30
g722main 4503 1440960 4550 1164800 101,04 80,83
music 4676 1496320 4693 1201408 100,36 80,29
radproc 2852 912640 2844 728064 99,72 79,78
edge 5190 1660800 5245 1342720 101,06 80,85
expand 4689 1500480 4810 1231360 102,58 82,06
flatten 4041 1293120 4162 1065472 102,99 82,40
smooth 3745 1198400 3823 978688 102,08 81,67
cjpeg 9112 2915840 9199 2354944 100,95 80,76
go 46043 14733760 46339 11862784 100,64 80,51
compress 4103 1312960 4115 1053440 100,29 80,23
averages 101.10% 80.88%

Table 7.5:mach.big benchmark results
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7.1.3 Conclusions

From the benchmarks we can observe the following:

� The instruction count increases in the new implementation. This is expected behavior,
since now the immediates have to take up space normally occupied by moves.

� The average increase is about 1 to 3% for fairly large architectures. This number is rela-
tively low, since the average share of immediate-moves in the instruction stream is much
higher than that. This means that most immediates were encoded in unoccupied move
slots. This is also backed by the fact that in fairly large machines, with e.g. 6 buses, the
last 2 or 3 buses only achieve a utilization of about 20%.

� The mach.small architecture, with only 3 buses, has to take a 6% increase in cycle
count. The move bus utilization is much higher or efficient in small architectures. There-
fore immediates cannot always be scheduled in unoccupied slots and extra instructions
have to be added.

� Since the immediates now are scheduled in the move slots, the dedicated move fields can
go away. This results in an average of a 20% shorter instruction word. This can also be
observed from table 7.1. Since the average instruction count increase is relatively low, the
effective gain of this implementation is the removal of the dedicated move fields.

We can finally conclude that the “resource variant” implementation of the long immediates in
the MOVE framework has resulted in an implementation where there is a clean hook for schedul-
ing immediates in the code, without cluttering the code base with extra support for immediates
in various parts of the code. The main hook where the implementation comes into play is in
FindImmMoveBus . The quantitative results indicate that the average increase in cycle count is
relatively very low compared to the number of moves that have an immediate in its source field.
This increase in cycle count is completely overshadowed by the reduction in code size since we
do not need a dedicated move field anymore. The real efficiency gained thus is a 1% increase in
execution time against a 20% (average) decrease in code size. Especially in environments where
MOVE is deployed, e.g. embedded systems, the emphasis lies on the code size and not so much
on the execution time.

7.2 Future work

The design space of Long Immediates in MOVE is not completely exhausted yet. Also, other
tools, likeexplore can benefit from a long immediate implementation. These issues will be
discussed in this section.

7.2.1 Exploration

explore is a tool that evaluates different machine configurations in order to come up with an
optimal (cost/performance wise) MOVE configuration for a certain application. A short intro-
duction into optimization of a move configuration through exploration is given in chapter 2 and
especially section 2.1.2.



7.2. FUTURE WORK 71

Since long immediates are part of the real MOVE configuration now, instead of the old im-
plementation of fixed fields alongside the instruction word, exploration should evaluate different
long immediate combinations.

Since the design of long immediates in MOVE is so extremely flexible, an implementation
of long immediates inexplore should be designed very carefully. The design space is quite
large:

1. Different move slots can be used as immediate bit field
2. Move slots can be concatenated to form larger immediates
3. Different immediate registers can write to different move slots
4. A certain cycle can combine various writes to immediate registers

Because of all these degrees of freedom, an enormous design space can be evaluated. During
an implementation, a designer should carefully choose with degrees of freedom are useful for ex-
ploration. Quick-and-dirty tests can probably reveal which changes in the machine configuration
have a big impact and, as such, will be suitable for exploration.

7.2.2 Immediate sharing

Immediate sharing is the concept of writing to an immediate register once, and reading from that
immediate register many times. Figure 7.1 tries to visualize this.

Currently, the algorithms are designed in such a way, that an immediate write and read are
coupled together. The scheduling algorithm schedules the read (ai0 -> dst move), after
which a suitable slot, where the immediate will be written to an immediate register, will be
found. The check whether an immediate register resource is available is done through the func-
tionsRTab::IsBusy(IReg*) andRTab::IsFree(IReg*) . Currently, these functions
will return a notion of “busy” if the immediate register resource is occupied.

Already implemented, however, is the functionRTab::IsBusy(IReg*, int val) ,
which will return a notion of “free”, even if the immediate resource is busy, but theval value
matches the value already in the immediate register. This way, resource checking by means
of RTab::IsBusy(IReg*, int val) provides a way to share immediates in immediate
registers.

The functionsRTab::Claim(IReg*) andRTab::Release(IReg*) both have pro-
visions for immediate sharing. Instead of a boolean value that indicates “busy”, a reference
counter is used.

As can be seen, the data structures and functions are already suited for a long immediate
sharing implementation. What is needed is adaptation of the main algorithms to take advantage
of this.

To get an idea how effective sharing of long immediates is, the following test was conducted:
Every time a long immediate is tried for a schedule, a call toRTab::IsBusy(Ireg*, int
val) is done. A counter was kept how many time this call returned “false”, while the actual
value in the immediate register was the same as the immediate value under schedule. This
counter effectively counts the number of times that immediate sharing was possible. Another
counter tallied the total number of tries for immediate sharing. These two counters give an
idea of the frequency of possible immediate sharings. The result for an extensive benchmark
consisting of 30 tests resulted in an overall frequency of about 0.5% to 1.0%.
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Figure 7.1: Sharing of long immediates

7.2.3 Region scheduling of immediates

Region scheduling is the concept of moving moves to predecessor blocks, in order to take advan-
tage of possible empty slots in those predecessors. For more information on region scheduling,
also known as interbasicblock scheduling, see [Cor95a] and [Hoo96].

Region scheduling normally applies automatically to moves. Immediate writes are not real
moves, however, but nothing more than a resource occupied, and accounted for by the Long
Immediate Tag. This makes it impossible for the scheduler to transparently ”import”1 immediate
writes in predecessor blocks. Figure 7.2 visualizes the concept of importing long immediates.
However, an algorithm analogous to the already existing import routines can be developed for
the immediate writes.

The functionScheduleLImm() is responsible for finding a suitable cycle. Normally a
loop from a certainmax cycle down to cycle zero tries to find a suitable cycle. If we reach
cycle zero, and no suitable cycle is found,ScheduleLImm() returns false . Instead of
returning false, code analogous toSchedulOp() andSchedulOp2() can be constructed: If
no suitable cycle is found, try to import the immediate write in all predecessors of the current
block.

To get an idea how effective importing could be, the following test was conducted: Every
time a long immediate is tried for schedule, a counter is incremented every time the main loop
in ScheduleLImm (see algorithm 7) fails. This means the loop hit the ceiling of a basic
block, after which importing to predecessors could be deployed. Another counter keeps the total
number of tries for immediate sharing. These two counters give an idea of the frequency of
importing possibilities. The result for an extensive benchmark consisting of 30 tests, done with
various machine descriptions and various benchmarks, resulted in an overall frequency of 5%
to 10%. This means that in 5 to 10 percent of the cases a schedule in that basic block with
that specific set of sockets, immediate registers and move buses failed. Most probably another
combination of those sockets, immediate registers and move buses could be scheduled correctly,
without the need to resort to importing. This observation is backed by the fact that usually in over
75% of the immediate schedules, the write is scheduled in the same cycle as the read, keeping

1the concept of placing moves in predecessor blocks
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the immediate register only busy for that one cycle.

7.2.4 Conclusions

Although the immediate implementation could still be extended, tests show that the extra ef-
ficiency achieved by implementing “importing” and “sharing” of immediate writes seem low
compared to the already achieved benefits obtained by removing the dedicated move slots. The
implementation of long-immediate exploration in theexplore tools however will be a valuable
addition to the framework, since this will give the designer the ability to make an architecture
description that is as optimal as possible. For instance, an extra immediate register might boost
performance by enabling the scheduling of more than one immediate in one cycle, but one has
to consider the fact that in hardware this register might be expensive.
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The pseudo-move variant 8

The long immediate implementation as discussed in the previous chapters (the “resource vari-
ant”) is not the only implementation done on the MOVE framework. Parallel to this implemen-
tation, primarily driven by the PcomP architecture (see chapter 1), TNO-FEL had a need for its
own implementation. This section will discuss the motivation behind that implementation, and
a brief overview of it. This implementation, dubbed the “pseudo-move” variant will be com-
pared to the “resource variant” implementation, both qualitative, by comparing the algorithms
and drawing conclusions, and quantitatively, by benchmarking both implementations.

8.1 Implementation

The implementation discussed in this report has an important paradigm: “Try to make the im-
plementation as stand-alone as possible, so existing code won’t have to be changed a lot.” This
decision was made because the current source of the scheduler was considered to be quite dif-
ficult to understand in the short amount of time that was available. Also, because of many non-
documented inter-dependencies of data structures in the source, at first sight obvious changes
to the scheduler might result in bugs in completely different parts of the scheduler. That this
assumption didn’t hold in the end, can be read in chapter 9.

The implementation of TNO-FEL used another paradigm: “Implement as obvious as possi-
ble, in order to get the implementation done quick, even if that means making changes to various
fundamental data structures”.

Basically, the “pseudo-move” implementation is the following:

1. Before scheduling, transform a move containing an immediate in a separate operation
that writes to a virtual register, and a move that reads this virtual register instead of the
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immediate directly. A data dependency is then added to link the two operations. Note that
while the “immediate read” move still is a real move, the “immediate write” move is a
pseudo move, since it doesn’t represent a real transport during execution, but merely an
encoding of bits.

2. A new operationIMMEDIATE is defined, as well as the flagsIMMEDIATE and
LONGIMMEDIATEfor theNode andMove classes.

3. During scheduling, the operationIMMEDIATE is handled on the same level as other
classes of operations likeCOPY, OPERATION, JUMPandCALL. The moves that make
up this operation; at least one immediate write and exactly one immediate read; are all
treated as real moves, appearing in move lists and eligible for optimizations like import-
ing.

4. The last step is performed after scheduling and will distribute the bits of the immediate
over all “immediate write” moves, so the binary writer knows what bits to write to what
fields. Interesting detail is that also the “immediate write” move can store a couple of bits
in the unused opcode field of the “immediate register” address.

Figure 8.1 will visualize the transformation of the moves.i0 here represent any immediate
register, since this will change during scheduling anyway.�r33 here represent any virtual register.
Later on, this virtual register will be assigned to a real register by the register allocator.
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Figure 8.1: Transformation to immediate operation

This is all implemented via a couple of routines in the scheduler source and a new machfile
format. The machfile format is altered to incorporate the movebus where the immediate bits of
that particular immediate register are read from, and it is augmented with a field that specify how
many immediate bits can be stored in the source field of the “immediate use” move. Although
that source field contains the encoding for an immediate register, e.g. “i0”, this immediate
register has no further opcode specifications, so some bits remain available for immediate bits.
An example of an old and a new section ofImmediateUnits is the following:

Old format:
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ImmediateUnits
{

i0 16, signed, i0_r;
}

New format:

ImmediateUnits
{

i0 16, signed, {m2,m3}, 3, i0_r;
}

As you can see, the new format specifies in what move slot the immediate bits are written
(in this case from slots that server movebusm2andm3), and an integer specifying how many
immediate bits can be stored in the opcode field of the source field of the immediate use (in this
case 3 bits).

Algorithm 14 will show how a move containing immediate bits is converted into a new oper-
ation, the original move and a data dependency between them. TheBuildLongImmediates
is called for every move during the computation of the the data flow information in routine
ComputeDFlowInfo .

During scheduling, the routines ScheduleInterBasicBlock and
ScheduleIntraBasicBlock are responsible for dispatching to schedule functions
based on the operation type. We know have a new operation, the immediate operation. Every
operation is scheduled from its “hook”, for a normal operation the trigger move, and in this
case the “immediate write” move. If the two dispatch routines encounter such a move, they will
dispatch to a new routine,ScheduleLongImmediate . TheScheduleLongImmediate
routine and its helper routines are based on theScheduleOperation routines. The analog
of the trigger move is the “immediate read” move and the analog of the operand moves are
the pseudo moves that represents the “immediate write”. Now normal scheduling of the new
operation can proceed.

After scheduling, a routine calledAssignLongImmediates is called. This routine is
responsible for assigning parts of the bitfields of an immediate to the various “immediate write”
pseudo movesand to the empty opcode-field bits of the “immediate register” source field of
the “immediate read” move. The “immediate” moves have a special fieldimm val for this
purpose, which is used during binary write when the actual bits are written into the binary stream.
Algorithm 15 will give an overview of this algorithm.

8.2 Qualitative comparison

The advantages of this implementation over the “resource variant” are:

1. Since the immediate writes are real moves, they can be treated as such by the scheduler.
2. Importing of immediate writes to other basic blocks is possible.

The disadvantages of the “pseudo move” implementation are:
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Algorithm 14 BuildLongImmediates (*Move)
1: // compute the number of slots needed for this immediate
2: for all move slotdo
3: if move slot can contain immediate bitsthen
4: increment nrof slots needed
5: decrement immediate with width of move slot
6: end if
7: if immediate width reaches zerothen
8: break
9: end if

10: end for
11: // make the new operation
12: make new rmove and rinsn
13: set rmove toorg guard:i0->free virtual register
14: set rmove to “IMMEDIATE RESULT” type
15: add rmove to rinsn
16: insert r insn to current block
17: for all nr of slots neededdo
18: make new imove and iinsn
19: set i move toorg guard:imm val->i0
20: set i move to “LONG IMMEDIATE” type
21: add i move to i insn
22: insert i insn to current block
23: end for
24: // link both operations together
25: if original move was a “COPY” movethen
26: bypass now, delete original move completely
27: else
28: clear “IMMEDIATE” flag from original move
29: set source field of original move to the free virtual register
30: add data flow dependency between rmove and the original move via the virtual register
31: end if

1. This solution adds one more move to the list of move than the “resource variant”. This
disadvantage can be canceled out if the move from the original operation is bypassed by
the immediate write in the “immediate operation”.

2. The “resource variant” has more flexibility in the writing of immediate registers, since
themach file format has been altered a lot to accommodate for a wide range of possible
encoding formats, specified by the LIT tag.

3. Sharing of immediate values is not possible in the “pseudo move” variant.

The next subsection will evaluate both implementations, showing whether above mentioned
advantages and disadvantages are indeed proven right.
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Algorithm 15 AssignLongImmediates
1: for all procedures in programdo
2: for all long immediate operations in proceduredo
3: for all moves in this operationdo
4: if move is an immediate read movethen
5: assign bits to ireg opcode field (write value of bits in theimm val field)
6: adjust remaining immediate value by shifting
7: end if
8: if move is an immediate write movethen
9: calculate maximum number of bits that this move slot can contain

10: assign bits to this move slot (write value of bits in theimm val field)
11: adjust remaining immediate value by shifting
12: end if
13: end for
14: end for
15: end for

8.3 Quantitative comparison

The two implementations “resource variant” and “pseudo-move variant” are both benchmarked
against the same suite. This suite is a subset of the suite used for the evaluation of the imple-
mentation. Only three mach-files were taken into consideration and the set of benchmarks was
not as extensive as in the “resource variant” review. Only instruction counts were taken into
account, since the codesize reduction due to the dedicated immediate fields is the same for both
implementations. Tables 8.1 to 8.3 will give the results between both implementations and a
relative figure that indicates which implementation achieves a lower instruction-count increase.
Since the two code bases are otherwise very different, it is unwise to try to compare the raw in-
struction counts. For instance, the compiler used to implement the “resource variant” has much
more bug fixes and is developed further than the compiler used to implement the “pseudo-move
variant”. Other than that, the compiler parameters were kept the same as much as possible. Used
options include “interbasicblock scheduling”, “early” register allocation, and a machine format
with at least 32 general purpose registers and a fully connected transportation network. For the
machfiles, see appendix C.

The tables consist of the following columns:

1. The instruction counts of the “resource variant”, both without (old) and with (new) long
immediate implementation

2. The instruction counts of the “pseudo-move variant”, both without (old) and with (new)
long immediate implementation

3. Relative increase in instruction count for both the “resource variant” and the “pseudo-
move” variant.
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old resource new resource old ps.-move new ps.-move resource relative ps.-move relative
benchmark instr.count instr.count instr.count instr.count instr.count instr.count

arfreq 991 1014 1166 1168 102.32 100.17
edge 4338 4453 3852 3971 102.65 103.09
flatten 3554 3616 3695 3751 101.74 101.52
smooth 3216 3273 3138 3212 101.77 102.36
cjpeg 8571 8749 9192 9318 102.07 101.37
averages 102.11% 101.70%

Table 8.1:mach.pcomp comparison

old resource new resource old ps.-move new ps.-move resource relative ps.-move relative
benchmark instr.count instr.count instr.count instr.count instr.count instr.count
arfreq 993 1014 1166 1166 102.11 100.00
edge 4390 4432 3870 3939 100.95 101.78
flatten 3593 3606 3670 3695 100.36 100.68
smooth 3222 3239 3111 3151 100.52 101.29
cjpeg 8590 8678 9187 9271 101.04 100.91
averages 101.37% 100.93%

Table 8.2:mach.one comparison

old resource new resource old ps.-move new ps.-move resource relative ps.-move relative
benchmark instr.count instr.count instr.count instr.count instr.count instr.count
arfreq 1160 1249 1313 1346 107.67 102.51
edge 5677 6086 5136 5384 107.20 104.82
flatten 4500 4804 4589 4795 106.75 104.49
smooth 4215 4492 4041 4242 106.57 104.97
cjpeg 11146 111696 11924 12447 104.93 104.39
averages 106.63% 104.24%

Table 8.3:mach.small comparison

8.4 Conclusions

Several conclusions can be drawn from the previous two subsections.

� Both implementation yield about the same increase in cycle count. Although the “pseudo
move variant” uses one more move in its conversion, this move can be bypassed in a
lot of cases. Also, we already saw in the conclusions for the “resource variant” that for
fairly large machines, the bus utilization is low enough to be able to store the immediate
write (and even an extra move in the “pseudo move variant”) without having to add a new
instruction.
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� For small architectures this utilization becomes more of a problem. You will see that the
“pseudo move” variant gets a slightly better efficiency in scheduling, since the immediate
write is a normal move under scheduling, a task for which many optimizations are written.

� Because the compiler used for the “pseudo-move variant” is not as optimized, more
“holes” in the instruction stream will appear, which is beneficial for efficient schedul-
ing of long immediates, which can take advantage of a less dense utilized transportation
network

We can now re-evaluate the advantages and disadvantages as presented in subsection 8.2:

� The main advantages of the “resource variant” are: There are relatively less adaptations to
the existing framework necessary. Adding a new type of “move” to the scheduler involves
adaptations of the code base in several parts of the scheduler. The other advantage is that
the design space of choosing which move slots write to which immediate register and
when, is much more flexible in the “resource variant”. The advantage of the “resource
variant” that it doesn’t need the extra move proved to be invalid for reasons stated in the
previous bullet points.

� The main advantages of the “pseudo-move” is that since the immediate write is a real
move, scheduling of the immediate write can be more efficient, since much work has
already be done on this field.

� It will be shown in the next section, section 7.2, that the advantages of possible importing
and sharing have very few effect on the achieved cycle counts. Both the “pseudo move
variant”, which was able to import, and the “resource variant”, which was able to share,
could benefit from these two optimizations, but both optimizations will probably never be
implemented.
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Conclusions and
recommendation 9

This chapter will present the conclusions on this thesis in section 9.1. Then section 9.2 will
present the recommendations for this thesis.

9.1 Conclusions

This section will give conclusions on all topics covered in this thesis. First, subsection 9.1.1 will
present conclusions on the endianness port. Subsection 9.1.2 will present conclusions on the
long immediates implementations. Finally, subsection 9.1.3 will give some general conclusions
on the whole graduation process.

9.1.1 Endianness

The original problem of the endianness port of the MOVE framework was twofold. On one side
it was desired to run the tools on (cheaper) little-endian machines, instead of on big-endian Suns
and HPs, as done so far. On the other side a certain realization of the MOVE framework at NEC
was to be embedded in a little-endian chip. Therefore is was desired that the MOVE framework
was to be made target-endianness aware. Both problems have a lot in common with each other,
so it was natural that both problems were solved at the same time.

Both problems were solved for all parts of the MOVE framework: the front-end consisting
of the GCC compiler, the GNU assembler, linker and bintools, and the C system libraries, and
the back-end, consisting of thesched source that is used to build the scheduler, simulator, and
various helper tools.

The result is a framework that can be either compiled for little-endian or big-endian target,
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by setting a Makefile switch at compile time. This framework can then be installed in paral-
lel to a framework of different target-endianness on one machine. The intermediate files are
host-endianness independent. One can take any intermediate file, such as objects, binaries and
profiling information, and process them further on a machine that has a different host-endianness
than the machine where that file was generated.

9.1.2 Long Immediates

The original problem of the long immediates was to find a better way to schedule long immedi-
ates. The old framework used dedicated immediate fields alongside the instruction word. The
goal was to get rid of these dedicated fields and use ordinary move slots for storing immediates.

An implementation, dubbed the “resource variant” was developed. It is called the “resource
variant” since the only way to track the immediates in the move slots is by checking various
resource tables such as the immediate register’s occupation and the contents of a special tag in
each instruction word. The method followed is to first completely schedule the use of the imme-
diate (e.g. thei0 -> r3 move), after which a special routine tries to schedule the immediate
definition (e.g. the# -> i0 move). Also taken into account is the backtracking of scheduling,
the so-called “killing” and “unkilling” of nodes.

This resulted in an implementation that adds between 1 and 5 percent to the instruction count.
This increase is low compared to the number of moves actually containing an immediate, which
can be between 10 and 30 percent. It turns out that most immediate writes are scheduled in
otherwise empty move slots. Also, take into consideration that since the dedicated immediate
fields are not needed anymore, the total code size (instruction count multiplied by the instruction
word length) decreases, up to 20 percent for some configurations.

A comparison with another implementation of Long Immediates in the MOVE framework
was conducted. This other implementation, dubbed the “pseudo move variant” uses pseudo-
moves to represent the immediate writes like# -> i0 . This gives this implementation a better
flexibility to schedule these immediate writes, but it is more limited in flexible immediate register
configurations, a feature of the “resource variant”. Both implementation achieve about the same
performance in terms of instruction count. Regarding implementation costs, it was expected that
the “resource variant” would be easier to implement, since all code was hooked from one point in
the scheduler. In the end this expectation did not come true, since several unexpected bugs turned
up in various parts of the code. The amendments made to the data structures with the expected,
documented behavior in mind, triggered several bugs that expected a different behavior. Closer
look at the documented API revealed that the API was indeed ambiguous at some points. Fixing
the triggered bugs to make the whole framework consistent again broke the paradigm of a clean
code interface. Concluding we can say that one of the planned main advantages of the “resource
variant”, this clean code interface, did not hold.

9.1.3 General

This subsection will give some generic conclusions on the work conducted and the environment
in which is was conducted. When I started this task, it was only supposed to be a small part of
my complete graduation. Due to various factors, of which the two most important the difficulty
of the scheduler source and the environment in which I conducted part of my thesis, my large
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task list gradually shrank to the two main topics as discussed in this thesis. Apart from these two
projects, also various other small projects related to the MOVE project and the PcomP processor
at NEC C&CRL were undertaken, but they fall outside the scope of this thesis

The scheduler source is a fairly large code base, contributed to by various developers, who
use their own coding-style and even language. Also, the documentation on the source is not
complete and in some cases even ambiguous. This results in the fact that a minor adaptation
in one part of the source can result in revealing a bug or just misunderstanding of the API in
a completely different part of the source. This makes bug hunting very cumbersome. Also,
because of the obsolete versions of the GNU front-end, the front-end is very hard to adapt. This
all results in the fact that the estimated time on bug-hunting is about 50% of the time spent on
the project.

9.2 Recommendations

This section will give recommendations on future work on the projects discussed in this thesis.
Subsection 9.2.1 will give some recommendations on the endianness work and subsection 9.2.2
will present some recommendations on the long immediates implementation.

9.2.1 Endianness

A few observations with respect to the endianness port can be made:

� The front-end tools are quite obsolete. The used version of the assembler, linker and
bintools is version 1.38, which was current in 1993. The GNU project has developed much
better, and most important, much better portable tools since then. The newest versions use
a common library,libbfd , that takes care of all binary-format specific tasks. This means
that the assembler, linker and bintools itself need very little changing.libbfd is a very
easily portable library, constructed with the easy port to a new architecture in mind. Also
changing the endianness of a target would have been much easier with this library. It is
recommended that in the future a newer version of the GNU tools are used, in order to
be better prepared for future modifications. The reason that this was not undertaken in
this project was that due to time constraints, a quicker, albeit less long-term, solution was
chosen.

� All intermediate forms of the front-end are binary. Since the back-end needs to parse this
binary back again into an internal format, it might be advisable to look into the possibili-
ties of a textual representation of all intermediate steps. This eliminates a lot of endianness
problems, and simplifies the reader of the back-end. Also intermediate steps can be visu-
ally inspected much easier this way. Drawbacks might include a larger size and possible
parsing complexity, but I do recommend that this option is taken into consideration.

9.2.2 Long Immediates

The work done on the long immediates represent a complete implementation for scheduling long
immediates in the MOVE framework. However, there is always room for more improvements.
Various ideas for future work will be presented, together with a judgment on the feasibility and
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usefulness of those ideas. These ideas are already explained in detail in section 7.2, together will
outlines on how to implement these.

Exploration Exploration means trying different machine descriptions until an optimal archi-
tecture is found. Optimal is here defined as a balance between costs (die area) and performance
(execution time). Long Immediate Encoding could be another parameter that is automatically
exploited.. Since the design of long immediates in MOVE is so extremely flexible, an implemen-
tation of long immediates inexplore should be designed very carefully. It is recommended
that theexplore tool is adapted to take Long Immediates into account.

Immediate sharing Immediate sharing means re-using the immediate write. Tests have shown
that the possibilities for immediate sharing are very limited in normal applications. The frame-
work as implemented is however almost ready to deploy immediate sharing, all data structures
and helper functions are in place. However, the complexity of the scheduler makes it unlikely
that the scheduler will produce correct code immediately. A decision should be made whether
this immediate sharing is desired, based on a review of the performance gain and a study how
hard it will be to enable immediate sharing correctly.

Region scheduling of immediates Region scheduling, or importing of immediates means
moving and copying an immediate write to predecessor blocks if an immediate write cannot
be scheduled in its home basic block. The same logic as in the previous paragraph goes here
too: A fair part of the code and algorithms needed to implement this in the scheduler is already
present. However, tests show that possibilities for importing are relatively low compared to the
work that will be needed to achieve a correct implementation. History has learned that the sched-
uler source is full of undocumented side effects, and care should be taken to not underestimate
the time needed to get a bug-free implementation.



Endianness related data
structures A

This appendix contains excerpts of some scheduler data classes, with emphasis on how they deal
with endianness.

A.1 SimMem

class SimMem
{
public:

virtual ˜SimMem() { };
virtual void WriteW(int, s32) = 0;
virtual void WriteH(int, s16) = 0;
virtual void WriteB(int, s8 ) = 0;
virtual void WriteS(int, f32) = 0;
virtual void WriteD(int, f64) = 0;
virtual s32 ReadW(int) = 0;
virtual s16 ReadH(int) = 0;
virtual s8 ReadB(int) = 0;
virtual f32 ReadS(int) = 0;
virtual f64 ReadD(int) = 0;

...
protected:
#if SWAP_ENDIANESS

s32 S(s32 data) { return SwapEndianess(data); }
s16 S(s16 data) { return SwapEndianess(data); }
f32 S(f32 data) { return SwapEndianess(data); }
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f64 S(f64 data) { return SwapEndianess(data); }
#else

s32 S(s32 mem_data) { return mem_data; }
s16 S(s16 mem_data) { return mem_data; }
f32 S(f32 mem_data) { return mem_data; }
f64 S(f64 mem_data) { return mem_data; }

#endif
};

// ########################################################################
// Class SimMem_internal
// ########################################################################
// Internal memory model used by the simulator.
// ########################################################################
class SimMem_internal : public SimMem
{
public:

void WriteW(int addr, s32 mem_data)
{ *(s32 *) Phys(addr) = S(mem_data); }

void WriteH(int addr, s16 mem_data)
{ *(s16 *) Phys(addr) = S(mem_data); }

void WriteB(int addr, s8 mem_data)
{ *(s8 *) Phys(addr) = mem_data; }

void WriteS(int addr, f32 mem_data)
{ *(f32 *) Phys(addr) = S(mem_data); }

void WriteD(int addr, f64 mem_data)
{

mem_data = S(mem_data);

((int *) Phys(addr))[0] = ((int *) &mem_data)[0];
((int *) Phys(addr))[1] = ((int *) &mem_data)[1];

}
s32 ReadW(int addr)

{ return S(*(s32 *) Phys(addr)); }
s16 ReadH(int addr)

{ return S(*(s16 *) Phys(addr)); }
s8 ReadB(int addr)

{ return *(s8 *) Phys(addr); }
f32 ReadS(int addr)

{ return S(*(f32 *) Phys(addr)); }
f64 ReadD(int addr)
{

f64 mem_data;

((int *) &mem_data)[0] = ((int *) Phys(addr))[0];
((int *) &mem_data)[1] = ((int *) Phys(addr))[1];

return S(mem_data);
}

...
}
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Long immediate related data
structures B

This appendix contains excerpts of some scheduler data classes, with emphasis on the new long
immediate format.

LImmMOp

class LImmMOp : public ListItem {
friend Mach;

public:
LImmMOp(const LImmMOp&);
LImmMOp(unsigned, int, int);
unsigned Slots() const { return slots; };
void SetSlots(unsigned s) { slots = s; };
int Bits() const { return nbits; };
int Encoding() const { return enc; };

private:
const int nbits;
unsigned slots;
const int enc;

};

LImmControl

class LImmControl : public ListItem {
friend int yyparse();
friend Mach;
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public:
unsigned Slots() const { return slots; };
void SetSlots(unsigned s) { slots = s; };
const LImmMOpList& GetMOpList() const { return microops; };
void CheckContents();

private:
LImmControl(LImmMOpList& list);
LImmMOpList microops;
unsigned slots;

};

Mach

class Mach {
...

const LImmControl* Mach::GetDefaultEncoding();
const LImmControl& GetLImmControl(int index);
int NumLImmOperations() { return icontrol.Count(); };

...
}

IReg

class IReg: public ListItem, public Mark
{
...
public:

LImmMOpIter PossibleEncoding(int size);
LImmMOpIter GetMOp() { return mops; };
LImmMOpList mops;

...
}

Insn

class Insn: public ListItem, public FlagSet, public Mark
{
...
public:

const LImmControl* ImmControlOp() { return immctrl; };
void SetImmControlOp(const LImmControl* newimm) { immctrl=newimm;};

private:
const LImmControl* immctrl;

...
}

RTabEntry
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class RTabEntry: public Mark
{
public:

int IsFree(IReg *ireg, int val)
{

int idx = ireg->Index();
return ireg_busy[idx] == 0 || ireg_val[idx] == val;

}
int IsBusy(IReg *ireg)
{

int idx = ireg->Index();
return ireg_busy[idx];

}
int IsBusy(IReg *ireg, int val)
{

return !IsFree(ireg, val);
}
void Claim(IReg *ireg, int val)
{

int idx = ireg->Index();

ireg_busy[idx]++;
ireg_val[idx] = val;

}
void Release(IReg *ireg)
{

ireg_busy[ireg->Index()]--;
}
long IRegVal(IReg* ireg) const
{

return ireg_val[ireg->Index()];
}

private:
char ireg_busy[MAX_N_IMMEDIATE_REGISTERS];
long ireg_val[MAX_N_IMMEDIATE_REGISTERS];

private:
const LImmControl* immctrl;

public:
const LImmControl* ImmControlOp() { return immctrl; };
void SetImmControlOp(const LImmControl* newimm) { immctrl=newimm; };
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Machine description files C

In this appendixes, the relevant parts of the used mach files are presented. All mach files have a
fully-connected transport network. Presented for each machine will be the used mach file used
for the “resource variant”, then the one used for the “pseudo-move variant” and lastly the mach
file used for no immediates at all.

C.1 mach.small

“resource variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;

}

LongImmediate
{
Registers:

i0 32, signed, ir_0;
Control:
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{};
i0 32 : { 2 };

}

“pseudo-move variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;

}

ImmediateUnits
{

i1 32, signed, {m3}, 0, ir_1, ;
}

old long immediates support

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;

}

ImmediateUnits
{

i1 32, signed, ir_1;
}

C.2 mach.pcomp

“resource variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
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{
m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

LongImmediate
{
Registers:

i0 20, signed, ir_0;
i1 20, signed, ir_1;
i2 32, signed, ir_2;

Control:
{};
i0 20 : { 4 };
i1 20 : { 5 };
i0 20 : { 4 }, i1 20: { 5 }, i2 32: {4,5};

}

“pseudo-move variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

ImmediateUnits
{

i1 32, signed, {m5}, 0, ir_1;
i2 20, signed, {m6}, 0, ir_2;
i3 20, signed, {m5,m6}, 0, ir_3;

}

old long immediates support

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4
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MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

ImmediateUnits
{

i1 32, signed, ir_1;
i2 20, signed, ir_2;
i3 20, signed, ir_3;

}

C.3 mach.one

“resource variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

LongImmediate
{
Registers:

i0 32, signed, ir_0;
Control:

{};
i0 32 : { 5 };

}

“pseudo-move variant”

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4
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MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

ImmediateUnits
{

i0 32, signed, {m6}, 0, ir_0;
}

old long immediate support

#define N_IREGS 32
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;

}

ImmediateUnits
{

i0 32, signed, ir_0;
}

C.4 mach.big

“resource variant”

#define N_IREGS 64
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
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m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;
m7 64, 8, signed;
m8 64, 8, signed;

}

LongImmediate
{
Registers:

i1 32, signed, ir_1;
i2 32, signed, ir_2;

Control:
{};
i1 32: {6};
i2 32: {7};
i1 32: {6}, i2 32: {7};

}

old long immediate support

#define N_IREGS 64
#define N_FREGS 48
#define N_BREGS 4

MoveBusses
{

m1 64, 8, signed;
m2 64, 8, signed;
m3 64, 8, signed;
m4 64, 8, signed;
m5 64, 8, signed;
m6 64, 8, signed;
m7 64, 8, signed;
m8 64, 8, signed;

}

ImmediateUnits
{

i1 32, signed, ir_1;
i2 32, signed, ir_2;

}
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